原位置不飽和透水試験と広範囲の移流拡散解析 In-situ Unsaturated Hydraulic Conductivity Tests and Advective Diffusion Analysis for Wide-area

森田修二* 今泉和俊** 三澤孝史** 浅野 剛**

要旨

本研究では、津波堆積物等による広範囲の地下水汚染の予測精度の向上を図るために原位置の不 飽和透水試験法の開発と数値解析手法の改良を行った。本報の原位置試験法は簡易な方法であるが、 不飽和特性のパラメータや飽和透水係数の同定が可能であり、地表における圧力条件を任意に設定 できる効率的な測定方法である。また、広範囲の地下水汚染の解析を目的として移流拡散解析の EL 法(拡散項と移流項の計算を分離)の改良を提案した。既往の実験結果により解析精度を検証 し、現地のモデル解析により広範囲の解析に適用可能であることを確認した。

キーワード:原位置不飽和透水試験、移流拡散解析、オイラリアン・ラグランジアン法

1. まえがき

東日本大震災では、自然由来の重金属類を含んだ津波 堆積物による土壌汚染が報告¹⁾されている。今後、降 雨などにより津波堆積物から流出する重金属物質が地下 水汚染を引き起こすことが予想される。また、震災地で 発生したガレキの集積場から人工物(家電、機械等)の 重金属類が流出することも考えられる。このような地下 水汚染の対策には、地下水の流れを把握する必要がある。 地下水流速の測定では、飽和領域の透水係数を求めるた めに揚水試験が行われるが、不飽和領域における透水係 数の測定方法はまだ確立されていない。

今回、原位置における不飽和透水試験機を開発し、岩 手県下閉伊郡山田町の震災ガレキ処理(破砕・選別等) 現場で適用し、飽和領域については従来の揚水試験を実 施した。なお、当現場ではガレキの仮置場から重金属類 が流出する可能性があったため、ガレキ仮置場を中心に 土壌分析も実施した。

また、地下水汚染のシミュレーションには移流拡散解 析が行われるが、代表的な解析手法としてはオイラー法 やオイラリアン・ラグランジアン法(EL法)が知られ ている。しかし、広範囲の解析にはオイラー法は不向き であり、現実的には EL法に限られる。一方、EL法に も数値分散という問題点がある。本報告では EL法に改 良を加えた解析手法を提案し、その精度の検証と現地を 対象にしたケーススタディを行った。

ガレキ処理現場での地下水流の調査と土壌汚染調査、 および数値解析によるシミュレーションという一連の取 組みを行ったのでこれらの結果をまとめて報告する。

2. 原位置不飽和透水試験

2.1 試験方法

原位置での不飽和透水試験には幾つかの方法が提案されているが、いまだ確立されてはいない。例えば、地盤 に注水しながら地中のサクションや体積含水率を測定し て不飽和特性を確認する方法がとられる。竹下ら²⁾の 提案するものは土の体積含水率のみを測定する簡易な方 法であり、不飽和特性を表す VanGenuchten モデル (VG モデル)のパラメータの算定を目的としている。本研究 では、竹下らの方法に改良を加え現地の透水性に応じて 測定時間を短縮する測定装置を開発した。**図ー1**に装置 の概要を示し、試験方法の手順を以下に示す。

- i. 地中に測定孔を削孔(径 φ=30mm、深さ L=1m)
- ii. 土壌水分計を測定孔に設置(センサーと孔壁間は 削孔土で充填してよく締固める)
- iii. 地表面に密閉蓋型給水装置を設置(漏水が無いように土壌水分計を固定)

*西日本支社土木技術部 **技術研究所

- iv. 密閉蓋型給水装置に定量電動ポンプで給水し、バ ルブ調整と小型圧力計で圧力を一定に管理
- v. 土壌水分計により深度ごとの含水率の変化を測定

vi. 数値解析により VG モデルの不飽和特性を同定

なお、土壌水分計には Delta-T 社製のプロファイルプ ローブ PR2/6 を用いた。地表面から 10cm、20cm、30cm、 40cm、60cm、100cm の深度の土の体積含水率が測定で きる。測定中は定量ポンプ(イワキ電磁定量ポンプ EHN-C36、最大吐出圧 0.2MPa)で定流量の真水を給水 し、配管して給水タンクに循環させた。密閉蓋に取り付 けた配管のバルブ調整で蓋内の圧力を一定に管理した。

2.2 試験結果

a. 予備実験

子備実験として砂質地盤で原位置不飽和透水試験を実施した。写真-1には実験状況の例を示した。この実験では、密閉蓋を使用せず塩ビ管内の水位を一定にして地表面から地中に真水を浸透させた。給水条件は、塩ビ管内径が φ 30cm、静水位はGL+1cmである。土壌水分計のセンサー深度を表-1に示す。計測点 no.5 は地下水位以下であり、no.4 も初期含水率が高い状況であった。 図-2に実験結果を示したが、地盤の透水性が高く、no.1~no.3 の含水率に有為な変化が測定できる時間(約5分)で終了とした。表-2には数値解析で求めた飽和透水係数と不飽和特性値(式(1)、式(2)参照)を示す。

なお、初期水位は GL-0.9m としている。図-3に体 積含水率のシミュレーション結果を示す。解析には図-4に示す要素分割を用い、2 次元の軸対称解析を行った。

実験結果と解析結果に差違はあるが、一般に土壌は不 均一で透水係数がオーダーで評価されることから、本実 験でも一定の評価ができている。no.4 は初期状態から含 水率が高いことが解析結果でも評価できている。図-5 には給水 1 分後と 5 分後の含水率のコンターを示す。 GL-0.4m 付近までは徐々に水が浸潤し、GL-0.5m 以深で は初期から含水率が高い状況が表されている。

b. 原位置不飽和透水試驗

逶水 伛 粉

図-6には、前述のガレキ処理現場の全景を示す。北 エリア(no.1)と中央エリア(no.2)、南エリア(no.3) の3か所で原位置の不飽和透水試験を実施した。現地の 表土は真砂を締固めた埋土であり、非常に透水性が悪い 状況であった。

表-2 VG モデルのパラメータ

建应休藉 的和休藉

k(m/s)	含水率θ	含水率 θ。	m	п	α		
1×10^{-4}	0.08	0.31	0.74	3.85	2.0		
飽和度: $S_e = \left\{ 1 + (\alpha \phi)^n \right\}^m$ (m = 1 - 1/n) (1)							
比透水	係数: $k_r = S_e$	$\frac{1}{2} \begin{cases} 1 - (1 - S) \\ 1 - (1 - S) \end{cases}$	$\binom{1/m}{e}^n$	$\Big\}^2$	(2)		

図-7に気象庁による山田町の降雨記録を示す。計測 は2014年4月7日から6日間で実施している。計測の 3日前に76.5mmの降雨があり、地盤の含水率がやや高 い状況と思われる。

図-8には、地点 no.1 における体積含水率の測定結 果を示した。青線は地表の水圧(密閉蓋内)を示す。水 圧は 0.01MPa から 0.04MPa まで段階的に上昇させて実 験時間の短縮を図った。水圧を増加させることで含水率 の上昇が段階的に促進されており、深度の浅い測点 (GL-0.1m、-0.2m) でその傾向が明確である。初期含 水率が深度によって異なっているのは降雨の影響や地中 の土質状況(砂利の混入等)によるものと考えられる。 深度 GL-0.8m では含水率の変化が小さく、測定開始か ら 400 分経過後にわずかに上昇している。

図-9には地点 no.2 における測定結果を示す。地点 no.1 に比べて水圧が低く(0.01~0.025MPa)、測定時間

図-6 ガレキ処理現場の全景

を短くしたため体積含水率が上昇したのは GL-0.2m までであった。写真-2には測定状況を示す。

表-3には、数値シミュレーションで求めた不飽和特 性値等を示し、図-10 には VG モデルの不飽和特性曲 線を示す。なお、解析モデルは図-4と同じである。

図-11 と図-12 には体積含水率の数値解析結果と計 測値の比較を示す。数値解析では、初期水位(ϕ_0)は 全地点で深度によらず GL-2m と仮定したが、後述する 揚水試験で確認した第1帯水層の水位を参考に決定した。 図中には地表の水圧条件も示す。数値解析結果では、水 圧変化に伴う含水率の上昇もよく再現できており、計測 結果がよくシミュレートできていることが分かる。飽和 透水係数は 0.8~1.5×10⁵ m/min (1.3~2.5×10⁷ m/sec) のオーダーであり、試験地点によるばらつきは小さい。 地点ごとの不飽和特性を比較すると、no.1 と no.2 の $\theta - \phi$ 曲線は小さいサクションで体積含水率が急激に低 下しており、不飽和域の透水性が飽和領域に比べて相対 的に小さいことを示している。

写真-2 原位置不飽和透水試験(地点 no. 2)

表-3 不飽和特性値の一覧

試験位置	no.1	no.2	no.3
残留体積含水率 θ_r	0.21	0.17	0.17
飽和体積含水率 θ_s	0.33	0.30	0.29
m (式(1),(2))	0.5	0.5	0.5
n (式(1),(2))	2.0	2.0	2.0
α (式(1))	10	10	2.0
初期水位 ϕ₀(m)	-2	-2	-2
透水係数 k(m/min)	1.0×10^{-5}	1.5×10^{-5}	8.0×10^{-6}

3. 揚水試験

同じくガレキ処理現場において揚水試験を実施した。 図-6に揚水試験の計測位置を示す。表-4には揚水試 験を行ったボーリングの深度ごとの土質区分を示した。 GL-1.2m~GL-2.2m に難透水層があり、上部の第1帯水 層と下部の第2帯水層に分かれている。第1帯水層と第 2帯水層を対象とした揚水試験をそれぞれ実施した。

第1帯水層を対象に非定常法による揚水試験(地盤工 学会 JGS 1314、式(3)) を実施した。試験結果を図-13 と表-5に示す。透水係数は1.0×10⁵ m/sのオーダーで あった。不飽和透水試験で求めた透水係数とオーダーが 異なる差違があり、今後の検討課題である。

$$k = \frac{(2.3d)^2 \times \log(4L/D)}{8 \times L} \times \frac{\log(s_1/s_2)}{t_2 - t_1}$$
(3)
d: 測定管内径 (0.072m)、L: 試験区間長 (0.15m)、D: 試験
孔径 (0.066m)、 s_1, s_2 : 水位差 (m)、 t_1, t_2 : 水位差の時刻

第2帯水層では、定常法(JGS1314、式(4))と回復 法(JGS1315、式(5))による揚水試験を行った。試験 結果を図-14と表-6に示す。透水係数は1.0×10⁻⁵ m/s のオーダーであり、第1帯水層と同等の数値であった。

[定常法]
$$k = \frac{2.3 \times Q \times \log(4L/D)}{2\pi \times s_0 \times L}$$
 (4)

[回復法]
$$k = \frac{2.3 \times Q}{4\pi \times a \times b}$$
 (5)

 $Q: 揚水流量 (2.19 \times 10^{-4} \text{ m}^3/\text{s})、 s_0: 定常時の水位差 (3.11m)$ L: 試験区間長 (6.8m)、a: s-log(t/t')の直線部の1サイクル 水位低下量 (0.25m)、b:帯水層の厚さ (6.8m)、t': 揚水停止後 の時間、t: 揚水開始後の時間

表一4 深度ごとの土質区分

	-14			
深度 (m)	土質 区分	色調	記事	水位(GL- m)
${0 \atop 0.5}^{\circ} \sim$	埋土(砂礫)	茶褐	混入 礫 は φ 5 ~ 70mm 程度	1.15 (第 1 帯水
~ 1.25	埋土(シルト 質砂)	淡茶	微細砂主体でシル トを帯びる	層)
~ 2.20	砂混りシルト	黒灰	有機物混入	難透水層
~ 2.85	砂	黒 灰 ~ 黄茶	含水多い細砂	0.45 (第 2 帯水
~ 5.20	礫混り砂	黒 灰 ~ 黄褐	混入 礫 は φ 5 ~ 30mm の亜角礫多い	層)
\sim 10.0	真砂	白灰	花崗岩の強風化帯	

図-13 揚水試験(非定常法)の孔内水位の変化

表-5 第1帯水層の透水係数

試験深度	地下水位	土質名	試験方法	透水係数
(GL-m)	(GL-m)			k(m/s)
1.10~1.25	1.15	沁竹質砂	非定常法	7.90×10^{-6}
		t/t'		
1		10	100	1000
0	<u> </u>			

0.1 s(m) 0.2水位差 а 0.3 0 00 0 0.4 6 0.5 図-14 揚水試験(回復法)の孔内水位の変化

	表一 6	弗 2 帝水僧の	透水係致	
深度	地下水位	土質名	透水係数	友 k(m/s)
(GL-m)	(GL-m)		定常法	回復法
2.0~9.0	0.45	シルト質砂,真砂	8.98×10 ⁻⁶	2.36×10 ⁻⁵

4. 土壤分析

図-15 には、ガレキ処理現場におけるガレキ仮置場 の変遷(2011 年 8 月⇒11 月⇒2012 年 9 月⇒2013 年 2 月)を示す。この経緯を踏まえて土壌分析を行う地点を 10 か所(丸付数字)に絞り込んだ。各地点では表層 50cmについて 10m 区画の 5 点混合方式で第 2 種特定有 害物質(水銀を除く)の土壌分析を行った。

土壌分析の結果は溶出、含有(表-7、表-8参照) ともに全て環境基準値以下で多くが定量範囲未満であり、 ガレキ仮置場からの重金属類の流出は認められない。

図-15 ガレキ仮置場の変遷

表ー7 土壌分析の結果一覧(溶出量、単位:mg/L)

地点	Cd	Cr	CN	Se	Pb	As	F	В
1	< 0.001	< 0.01	1	< 0.002	< 0.005	< 0.005	< 0.08	< 0.1
2	< 0.001	< 0.01		< 0.002	< 0.005	< 0.005	0.16	< 0.1
3	< 0.001	< 0.01		< 0.002	< 0.005	< 0.005	0.10	< 0.1
4	< 0.001	< 0.01		< 0.002	< 0.005	< 0.005	0.30	< 0.1
5	< 0.001	< 0.01		< 0.002	< 0.005	< 0.005	0.22	< 0.1
6	< 0.001	< 0.01		< 0.002	< 0.005	< 0.005	0.10	< 0.1
7	< 0.001	< 0.01		< 0.002	< 0.005	< 0.005	0.12	< 0.1
8	< 0.001	< 0.01		< 0.002	< 0.005	< 0.005	< 0.08	< 0.1
9	< 0.001	0.01		< 0.002	< 0.005	< 0.005	0.21	< 0.1
10	< 0.001	< 0.01	-	< 0.002	< 0.005	< 0.005	0.09	< 0.1

「一」は検出されず

表-8 土壌分析の結果一覧(含有量、単位:mg/kg)

地点	Cd	Cr	CN	Se	Pb	As	F	В
1	<15	<25	<5	<15	<15	<15	<400	<400
2	<15	<25	<5	<15	<15	<15	<400	<400
3	<15	<25	<5	<15	15	<15	<400	<400
4	<15	<25	<5	<15	16	<15	<400	<400
5	<15	<25	<5	<15	100	<15	<400	<400
6	<15	<25	<5	<15	<15	<15	<400	<400
7	<15	<25	<5	<15	<15	<15	<400	<400
8	<15	<25	<5	<15	<15	<15	<400	<400
9	<15	<25	<5	<15	<15	<15	<400	<400
10	<15	<25	<5	<15	<15	<15	<400	<400

5. 改良 EL 法による移流拡散解析

地下水汚染の移流拡散解析では、浸透流方程式(式 (6))と移流拡散方程式(式(7))を解くことになる。

EL 法は式-7の第1項~第3項までの拡散項にオイ ラー法、第4項~第6項までの移流項にラグランジアン 法を適用する手法であり、解析プログラムによって解法 上の特徴³⁾がある。本手法では、移流項の扱いを単純 化しており、流速による物質移動と濃度の再配分を繰り 返し、移流元の濃度の算定にはアイソパラメトリック要 素の形状関数(図-16参照)を使用する。また、移流 項と拡散項の解析フローを図-17に示す。

一般に不飽和領域の浸透流は非線形性が強く、並行し て移流拡散方程式を EL 法で解く場合は、メッシュサイ ズとタイムステップの関係が解析精度に大きく関わる。 広範囲の解析を行う場合は自ずとメッシュサイズが制限 され、適したタイムステップが必要となる。また、流速 が場所と時間で変化するという問題もある。本手法では、 要素ごとに移流項を解くタイムステップを決定すること にした。流速が時々刻々と変化することから、要素ごと に移動距離を累積させて移流項の計算⁴⁾を行う。移流 項の取扱いを単純化したことで要素ごとに移流項を解く タイムステップが任意に変更できる手法である。

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial \phi}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial \phi}{\partial z} \right) - \mu \frac{\partial \phi}{\partial t} + Q_1 = 0 \quad (6)$$

$$\frac{\partial}{\partial x} \left(D_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_y \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial C}{\partial z} \right)$$

$$- v_x \frac{\partial C}{\partial x} - v_y \frac{\partial C}{\partial y} - v_z \frac{\partial C}{\partial z} - \frac{\partial C}{\partial t} + Q_2 = 0 \quad (7)$$

k:透水係数、μ:比水分容量、φ:全水頭、Q₁:降雨等の
 流量、D:分散係数、ν:地下水の実流速、C:物質濃度
 Q₂:物質の流量

図-17 改良 EL 法の解析フロー

図-20 現地の地形のモデル化

図-18 には過去に Warrick らが実施した実験概要³⁾ を示す。本実験ではトレーサ水を 2.8 時間かけて浸潤さ せた後に原水を 17.5 時間かけて浸潤させ、地表面から の浸潤水の濃度を測定している。図-19 には鉛直方向 の濃度分布の時間変化について、改良 EL 法と実験結果 の比較を示す。実験では 6.1m×6.1m にトレーサ水を浸 潤させているが、解析では平面問題として取扱った。ト レーサ水の濃度と浸潤深さがよく評価できており、EL 法特有の数値分散(物質濃度がメッシュ幅に分散)が抑 制できている。

図-20 にガレキ処理現場のモデル地形を示す。沿岸 部に重金属類を含むガレキ仮置場があり、降雨で重金属 類が地下水に流出する状況を想定した。現地の土壌分析 結果から重金属類の流出は認められなかったが、仮想の モデル解析を行った。解析領域は 500m×400m、帯水層 厚は 20m と設定した。節点数及び要素数は約 4 万、地 表部の要素幅は 40cm である。

境界条件には、現地の平均日降雨量(5mm/day)と海 水位(潮位変動±1m)を考慮した。揚水試験結果と原 位置不飽和透水試験結果を参考に透水係数は 1×10^5 m/s、 不飽和特性は VGモデル(n=2.0、 α =10、 θ r=0.15、 θ s =0.30)とした。なお、塩水の密度流は考慮していない。 図-21 に 6 か月後(1800 ステップ、 Δ t=0.1 日)のガレ

キ仮置場の A-A'断面の濃度比コンター(0.1%以下の低 濃度部分を表示)、図-22 にはガレキ仮置場から 10m と 20m 海側地点の濃度比の深度分布を示す。6 か月経 過した時点でも、ガレキ仮置場から 20m 離れた地点の 濃度は数%以下であり、拡散範囲は極めて狭い領域に限 定されるという結果であった。

6. あとがき

本報告では、改良型の原位置不飽和透水試験法を開発 し、現地での適用性を確認した。現地の地盤が難透水性 で十分な深さまで試験を実施できなかったが、今後は 様々な土質の地盤に適用し、さらに改良を行いたい。ま た、EL 法に改良を加えた移流拡散解析によって、広範 囲の地下水汚染の解析が可能であることを示したが、低 濃度域では数値誤差が生じてやや不安定な部分が見られ た。今後はさらに解析精度の向上を図りたい。

【参考文献】

- 駒井 武、川辺能成、原 淳子、坂本靖英、張 銘、 「東日本沿岸における津波堆積物の性状に関する緊 急調査」、GSJ 地質ニュース、Vol.1、No.6、pp.181-184、2012.6
- 竹下祐二、杉井俊夫、「不飽和地盤における原位置透 水試験」、土と基礎、54-5、pp.10-12、2006.5
- 3) 菱谷智幸、西垣 誠、橋本 学、「物質移動を伴う密 度依存地下水流の3次元数値解析手法に関する研究」、 土木学会論文集 No.638/III-49、pp.59-69、1999.12
- 4) 森田修二、狩野正人、「津波堆積物など広範囲の移流 拡散解析における EL 法の適用」、第 68 回土木学会 学術講演会、第3部門、pp.371-372、2013.9

保湿・保温養生マットの適用による 覆エコンクリートの養生効果

Effectiveness of Wet and Warm Insulation Mats for Curing Tunnel Lining Concrete

石井敏之* 東 邦和* 真嶋敏之** 森 良弘**

要 旨

山岳トンネルの覆エコンクリートは、表層部の緻密化やひび割れ発生の抑制を行なうことによっ て、耐久性の向上および長寿命化が図られている。その方策として、いろいろな養生方法が提案、 実施されているが、養生効果については十分な検証がなされていない。そこで、覆エコンクリート の養生に、保湿・保温養生マットを適用したトンネル新設工事において、その養生効果を検証する ために、養生の有り無しの区間を設けて計測を実施した。養生マットの適用により、覆エコンク リートは保湿・保温された養生環境に保たれ、その結果、強度や透気性能の向上および内部ひずみ の低減などが確認でき、覆エコンクリート表層部の耐久性が向上していることを検証した。

キーワード:覆エコンクリート、保湿・保温養生、耐久性、緻密化、ひび割れ抑制

1. まえがき

山岳トンネルの覆工コンクリートは、表層部の緻密化 やひび割れ発生の抑制などを行なうことによって、耐久 性の向上および長寿命化を図られることが多い。その方 策として、施工規模や環境条件などを考慮したいろいろ な覆エコンクリートの養生方法が提案され、散水養生 ¹⁾、アクティブ加温・湿潤養生²⁾、移動式シート養生³⁾ などを実施してきた。しかし、その養生効果については、 室内試験を基に評価されたものが多く、現場計測から養 生効果を定量的に検証したものは、まだ少ない。

観音坂トンネル新設工事では、覆工コンクリートの養 生に、保湿・保温養生マット(以下、養生マットと称 す)を適用した。その養生効果を検証するために、覆工 コンクリートの施工時に、養生無しのブロック(以下、 BL と称す)と養生有りの BL を設け、湿度、温度、ひ ずみ、強度、透気係数などの各種計測を実施した。

本報では、適用した養生方法の概要と養生効果の検証 を目的に実施した各種計測の結果について述べる。

2. トンネルの概要

計測を実施したトンネルは、滋賀県の県道間田長浜線 補助道路整備工事における「観音坂トンネル」である。 このトンネルは、旧トンネルの幅員が狭く老朽化が著し いため、利便性・安全性向上のために新たに整備される

*技術研究所 **西日本支社土木第2部

ものである。

同トンネルは、NATM で施工される全長 531m、幅員 10.75m(車道 2 車線、自転車歩行者道)の道路トンネ ルである。トンネルの標準断面を図-1に示す。トンネ ルの内空断面積は約 65m² で、覆工コンクリートの厚さ は 300mm(坑口付近は 350mm)である。覆工コンク リートの種類は 24-15-40BB で、配合を表-1に示す。

3. 養生方法

覆エコンクリートの養生は、写真-1に示すように、 外周に養生マットを固定した養生枠フレーム(長さ =5.25m/台)6台を、覆エコンクリート表面に密着固定 させて、7日間の保湿・保温を実施した。

養生枠フレームの移動と設置方法は、**写真-2**に示す ように、最後尾の養生枠フレームを取り外し、移動台車 に車載して前方のセントル後方位置まで移動させる。次 に、セントルの脱型前進後に、運搬してきた養生枠フ レームを、移動台車から覆エコンクリート表面に押し付 け、周方向の下端からジャッキベースで押し上げ、養生 マットを覆エコンクリート表面に密着固定させる。なお、 養生枠フレーム1台の長さは5.25m であり、1回の養生 作業で養生枠フレームを2台移動させる。また、養生枠 フレーム移動時に、養生マットの湿潤層へ散水すること によって、養生マットへの給水を行なった。

用いた養生マットの外観と断面を図-2に示す。養生 マットは、保湿層(t=1.3mm)と保温層(t=10mm)か らなる 2 層構造で、初期保水量が 1,300g/m²、湿潤状態 での総重量が 1,900g/m²である。

写真-1 覆エコンクリートの養生状況

写真-2 移動台車による養生枠フレームの移動

4. 計測方法

4.1 計測位置

計測した覆エコンクリートの BL は、図-3に示すよ うに、養生を行なう No.32 の養生有り BL と養生を行な わない No.35 の養生無し BL の 2 箇所である。BL での 計測位置は、図-4に示すように、BL 長 L=10.5m の中 央位置断面のスプリングラインである。また、コア採取 を目的に、養生有り無しの別置き試験体(幅 500×高さ 500×厚さ 300mm)を、BL 近傍で1 体ずつ作製した。

図-2 養生マットの外観と断面

4.2 計測項目

40

35

30

25

ပ္ပ

計測項目を表-2に示す。計測項目は、養生有り BL と養生無し BL において、覆エコンクリート内部のひず み、温度、含水率、および覆エコンクリート表面の温 度・湿度、含水率、反発度、透気係数である。更に、別 置き試験体では、コア採取による圧縮強度と細孔径分布 を計測した。計測間隔は、ひずみ、温度・湿度について は打設開始から8週まで(10分毎に自動計測)、含水率、 反発度については打設後1週、2週、4週、8週(手動 計測)とした。また、透気係数の測定間隔は、打設後4 週、8週に、別置き試験体のコア採取による圧縮強度と 細孔径分布は、打設後1週、4週とした。

計測箇所		計測項目	計測機器
トンネル	坑内	温度·湿度	温湿度計1台
		ひずみ	ひずみ計(軸&周方向) 深さ 30, 75, 150mm
	覆工 内部	温度	熱電対 深さ 30, 75, 150mm
養生を 行なう	4346	含水率	電気抵抗式水分計 深さ 30,50,75,100, 125,150mm
区間 (No.32BL)	覆工表面	温度•湿度	温湿度計1台 (覆エコンクリート面)
		温度·湿度	温湿度計1台 (養生シ ー ト面)
養生を		含水率	高周波容量式水分計
行わない 区間 (No.35BL)		反発度	テストハンマー
		透気係数	トレント法
	別置き 試験体	圧縮強度	
		細孔径分布	水銀圧入法 深さ 30mm

養生有りBL

坑内

表一2 計測項目

5. 計測結果

5.1 湿度 温度

養生有り BL での覆エコンクリート表面の湿度と温度 を図-5に示す。

養生有り BL での覆工コンクリート表面と養生マット 間の湿度(コンーマット間湿度)は、養生開始直後(打 設開始から 26 時間後)約 90%RH であったが、養生開 始からの約2時間後には100%RHになり、養生期間中 (打設開始から 28~218 時間) は 100%RH を保持した。 一方、坑内側の養生マット面(マット内空面湿度)の養 生期間中の湿度は、坑内湿度履歴と同様な傾向を呈し、 55~100%RH で変動した。

養生有り BL での覆エコンクリート表面と養生マット 間の温度は、後述する覆エコンクリート内部の温度履歴 と同様な傾向を呈し、また、坑内側の養生マット面の温 度は坑内温度履歴と同様な傾向を呈した。

養生有り BL と養生無し BL での覆エコンクリート内 部の温度を図-6に示す。

度

図ー6 覆エコンクリート内部の温度(左:養生有りBL 右:養生無しBL)

養生有り BL の覆エコンクリート打設時の坑内温度は 約 24℃で、セントル脱型直後(打設開始から 24 時間 後)の覆エコンクリート表面温度は約 31~33℃で、打 設開始から約9℃上昇した。養生開始から覆エコンク リートの温度は再び上昇し、打設開始から 51.5 時間後 にピーク温度 39℃となった。その後、覆工コンクリー トの温度は、養生終了時(打設開始から216時間後)ま で低下し約26℃となった。養生終了後の温度は、養生 期間中よりも温度低下が早くなり、打設開始から約 300 時間後には坑内温度とほぼ等しくなった。

一方、養生無し BL の覆エコンクリート打設時の坑内 温度は約 18℃で、セントル脱型直後の覆工コンクリー ト内部の温度は約 26.5~29℃であった。打設開始から脱 型時までの温度上昇は約9℃で、養生有り BL と同程度 の温度上昇であった。しかし、脱型後養生を行なわな かったため、覆工コンクリートの温度は脱型直後から低 下し、約 200 時間後に坑内温度の 20℃とほぼ等しく なった。

養生中の覆エコンクリート深さ方向の温度差は、養生 有り BL で表面と内部とで最大 1℃で、深さ 30~150mm ではほとんど温度差が見られなかった。養生無し BL で の内部温度差は、最大で、深さ 30~75mm で約 2.5℃、 75~150mm で約 2.0℃であった。

これより、保湿・保温養生によって、覆工コンクリー ト表面は、湿度が 100%RH で、表面から内部深さ方向 への温度勾配が小さくなり、コンクリートの養生に適し た環境が確保されていることが確認できた。

5.2 含水率

11

10

9

6

5

4

3

0

40

8 8

多大率 7

養生有り BL と養生無し BL での覆エコンクリートの 含水率測定結果を図-7に示す。含水率の測定には、覆 エコンクリートの表面を高周波容量式、内部を電気抵抗 式の水分計を用いた。

養生有り BL での含水率は、打設開始後 4 週経過(約 670 時間経過で養生終了後3週)しても、覆工コンク リートの表面から深さ 150mm まで湿潤な状態と考えら れる 6%以上に保持されている。8 週経過後に表面の含

養生有りBL

80

覆エコンクリート深さ(mm)

これらより、保湿・保温養生によって、覆工コンク リートの表層部は長期にわたって湿潤状態に保持され、 その結果、水和反応が促進され、覆工コンクリートの表 層部が緻密になる環境が保持されていると考えられる。

5.3 反発度 圧縮強度

テストハンマーによる反発度より求めた換算圧縮強度 を図-8に、別置き試験体から採取したコアによる圧縮 強度を図-9に示す。

図-7 覆エコンクリートの含水率(左:養生有りBL 右:養生無しBL)

1 调経调

2週経過

4週経過

8週経過

160

120

養生有り BL の覆工コンクリートの強度は、養生無し BL に比して 5~15%程度大きくなり、材齢 4 週で、同 じ BL での強度確認試験体(標準養生)と同程度になっ た。また、強度確認試験体に対する強度発現の比率は、 養生を行なった方が養生を行なわない場合に比して、材 齢 1 週で 1.24 倍、材齢 4 週で 1.13 倍となった。

養生有りの覆エコンクリートの強度は、養生無しに比 較して、強度発現が大きくかつ早くなり、材齢4週でほ ぼ強度確認試験体の強度と同程度になった。これは、保 湿・保温養生を行なうことにより、覆エコンクリート表 層部の水和反応が促進され、組織が緻密になったためと 考えられる。

5.4 透気係数

透気試験とは、ダブルチャンバー構造を有する真空セ ルで覆エコンクリートの表面から空気を吸引することに よって、深さ方向の透気係数を測定するものである。透 気係数を基に、覆エコンクリート表層の透気性品質⁴⁾ を表-3によって評価した。透気係数を図-10 に示す。

透気係数は、養生有り BL で $0.4 \sim 0.8 \times 10^{-16} m^2$ 、養生 無し BL で $2 \sim 3 \times 10^{-16} m^2$ となった。また、透気性品質 の評価は、養生有り BL で透気グレード 3 (一般)、養 生無し BL では透気性グレード 4 (劣) となった。また、 透気係数は中性化深さと高い相関があり、浸透塩分量と も良い相関があるといわれている。

これらより、保湿・保温養生を行なうことによって、 覆エコンクリートの透気係数が小さくなり、透気性グ レードも向上した。更に、透気性品質の向上により、有 筋部覆エコンクリートの中性化および塩害の抵抗性も向 上すると考えられる。

透気係数 (×10 ⁻¹⁶ m ²)	0.001 ~ 0.01	0.01 ~ 0.1	0.1 ~ 1	1 ~ 10	10 ~ 100
透気性グレ ー ド	1	2	3	4	5
透気性評価	優	良	一般	劣	極劣

表-3 透気係数による透気性の評価

5.5 細孔径分布

細孔径分布試験の試料には、別置き試験体からコア採 取した圧縮強度試験体の深さ 30mm 位置から切り出し た試料片を粉砕したものを用いた。粉砕した試料をアセ トンにより水和反応を停止させ、真空乾燥を行なった後、 測定範囲 3nm~180µm の水銀圧入式ポロシメータで細 孔径の分布を測定した。累積細孔容量を図-11 に、細 孔径分布を図-12 に示す。

養生有り BL の累積細孔容量は材齢 1 週で 0.129mL/g、 4 週で 0.119mL/g で、養生無し BL では材齢 1 週で 0.139mL/g、4 週で 0.127mL/g となった。養生無し BL の 方が材齢に係わらず累積細孔容量が 7%程度多くなって いた。また、細孔径分布において、細孔径 100nm~2μ m の範囲で、養生無し BL の細孔容量は養生有り BL に 比して多く存在している。

これらのことから、覆工コンクリートは、保湿・保温 養生によって、水和反応が促進され、コンクリート強度 に影響を及ぼすといわれている毛細管空隙のうちの比較 的大きな 50nm~25µm が少なくなり、この空隙が水和 反応によって生成された水和生成物で充足され、10nm 以下のゲル空隙にシフトし、より緻密なコンクリートに なったと考えられる。

5.6 覆エコンクリートの内部ひずみ

養生有り BL と養生無し BL での覆工コンクリート内 部の実ひずみの測定結果を図-13 に示す。

軸方向と周方向のひずみを見ると、養生の有無および 深さに関係なく、周方向の収縮ひずみが大きくなった。 また、深さ 75mm および 150mm の収縮ひずみは、養生 の有無に関係なく、-200~-300×10⁶ 程度であった。こ れは、図-7で示したように、深さ 75mm 以深におい て覆エコンクリートの含水率の減少が小さいため、乾燥 収縮による発生ひずみに大きな差が見られなかったと考 えられる。

一方、深さ 30mm の収縮ひずみは、養生無し BL の場 合には、脱型後から大きくなり 240 時間経過で約-300× 10⁶で、深さ 75mm に比して 1.4 倍程度大きく、その後 の増加も大きい。養生有り BL の場合には、養生終了後 1 遇から深さ 75mm に比して大きくなり始め、1200 時 間経過しても深さ 75mm に比して 1.2 倍程度であった。

図-13 覆エコンクリートのひずみ (上:養生有りBL 下:養生無しBL)

これは、養生無しの場合には、覆工コンクリートの含 水率が1週経過で既に表層部から減少しているため、早 期に乾燥収縮によるひずみが発生したと考えられる。養 生有りの場合には、2週経過しても表面での含水率の低 下がほとんど見られなかったため、深さ 30mm の表層 部の収縮ひずみの発生が養生無しに比較して小さくなっ たと考えられる。

6. まとめ

覆エコンクリートの保湿・保温養生マットによる養生 効果として、以下のことがわかった。

- i. 覆工コンクリートの養生環境は、湿度が100%RH で内部が湿潤状態に保湿され、表面から内部への 温度勾配が小さい状態で保温されたものとなる
- ii. 圧縮強度は、5~15%程度大きくなり、強度発現
 も早くなり、4 週経過で強度確認試験体(標準養
 生)と同程度になる
- iii. 透気性品質の向上(透気性グレードが4から3) および約7%の細孔容量の減少が図られ、コンク リート表層部の緻密化される
- iv. コンクリート表層部の乾燥収縮を抑制することが できる

7. あとがき

保湿・保温養生マットによる養生により、覆工コンク リートの表層部は、緻密化されることによって耐久性の 向上が図られ、また、湿潤状態が長く保持されることに よって乾燥収縮によるひび割れを抑制できることを検証 した。本検討を進めるに当たり、滋賀県長浜土木事務所 のご指導を賜ったことを深く感謝する。

【参考文献】

- 香藤隆弘、安井啓祐、石津智史、東 邦和、「山岳トンネル覆エコンクリートにおける 28 日連続山水養生の効果」、土木学会第 68 回年次学術講演会 VI、
 pp.845-846、2013.9
- 2) 柴田匡善、齊藤隆弘、星野直則他、「覆工コンクリートのアクティブ湿潤・加温養生システムの効果」、土木学会第 68 回年次学術講演会VI、pp.843-845、2013.9
- 3) 東 邦和、石井敏之、齊藤賢治、「保湿・保温養生 マットを用いた覆エコンクリートの養生効果」、奥村 組技術年報、No.37、pp.85-90、2013.9
- R.J.TORRENT、「カバークリートの透気係数の迅速な 決定方法」、土木工学における非破壊試験国際会議シ ンポジウム(NDT-CE)、pp.26-28、1995

マッシブな水門コンクリートの温度応力対策と 効果の評価

- 鉛直パイプクーリングと低熱高炉セメントの適用-

Measures to Control Thermal Stress in Massive Water-gate Concrete and Evaluation of Their Effects

- Application of Vertical Pipe Cooling and Low-heat Blast-furnace Cement -

東 邦和* 塚本耕治* 森田修二** 井 君人***

要旨

マッシブな水門コンクリートでは、ひび割れ対策を行うことによる品質向上が要求されている。施工した水門の 堰柱コンクリートは、幅2.0m、高さ8.15m、長さ23.5mの壁体が、厚さ2.0mの床版の上に打設されるという、ひび割 れの抑制が難しい構造物である。主なひび割れ対策として、材料面では低熱高炉セメントB種と膨張材を用い、施 工面では鉛直パイプクーリングを用いた。現地における計測と解析結果を比較することにより、個々の対策のひび 割れ低減効果を検討した。当該構造物においては、鉛直パイプクーリングが有効であり、軽微なかぶり部のひび割 れの発生にとどめることができた。

キーワード:水門コンクリート、鉛直パイプクーリング、低熱高炉セメントB種、温度応力解析

1. まえがき

水門構造物における壁体はマッシブな構造であり、 ひび割れ低減対策が要求されている。適用した工事の 名称を表-1に示す。堰柱コンクリートは幅 2.0m、 高さ 8.15m、長さ 23.5m の壁体が、厚さ 2.0m の床版 の上に打設されるという、ひび割れの抑制が難しい構 造物である。

対策として、材料面では低熱高炉セメント B 種と 膨張材を用い、施工面では鉛直パイプクーリングを用 いた。また、コンクリートの内外の温度差を小さくし、 表面ひび割れを防止するために、型枠断熱材を用い、 ひび割れ幅の拡大防止にガラス繊維ネットを使用した。 現地における計測結果と温度応力解析により、これら の対策の効果を比較検討した内容を述べる。

水門の堰柱・門柱の施工時の外観を**写真-1**に示す。 低減対策は、ひび割れ指数で「ひび割れの発生をでき る限り制限したい場合 1.40 以上」を目標に実施した。 鉛直パイプクーリング状況を**写真-2**に示す。

2. ひび割れ低減対策の概要

2.1 ひび割れ低減対策

温度ひび割れの低減のために、標準仕様で低熱高炉 セメント B 種を使用し、さらに収縮補償のために、セ

*技術研究所、**西日本支社土木技術部、***西日本支社九州支店

表一1 工事名称

工事名称	甫木水門改築工事
発注者	九州地方整備局大隅河川国道事務所

写真-1 水門の堰柱・門柱の施工時の外観

写真ー2 鉛直パイプクーリング状況

B/C	s/a	単位量(kg/m ³)						
(%)	(%)	水 W	セメント C	細骨材 S1	細骨材 S2	粗骨材 Gl	混和材 Adl	混和剤 Ad2
54.0	45.7	164	294	403	403	1088	10	3.496

表-2 配合と使用材料

呼び強度 24 保証材齢 56 日 スランプ 12cm 骨材最大寸法 20 mm 空気量 4.5%

セメント: 低熱高炉セメント B 種、密度 2.98 g/cm³ 水: 地下水

細骨材:S1 陸砂 産地:肝属郡東串良町 粗粒率 2.32 表乾密度 2.56 g/cm³
S2 陸砂 産地:曽於郡大崎町 粗粒率 2.52 表乾密度 2.54 g/cm³
粗骨材:砕石 2005 産地:肝属郡肝付町 実積率 59.0% 表乾密度 2.68 g/cm³
混和材:膨張材 低添加型 密度 3.16 g/cm³
混和剤:高性能 AE 減水剤 標準形(I種)

メントの内割り10kg/m³の膨張材を添加した。

コンクリートの配合と使用材料を表-2に示す。ひ び割れ低減対策一覧を表-3に示す。

事前の温度応力解析の結果により、ひび割れ低減効 果が不足することから、鉛直パイプクーリングを併用 した。また、内部拘束による表面ひび割れを防止する ために型枠断熱材を用い、ひび割れ幅の拡大防止のた め、鉄筋かぶり部分にガラス繊維ネットを配置した。

2.2 低熱高炉セメントと膨張材の添加

使用した低熱高炉セメント B 種は、低発熱・収縮 抑制型であり、初期に 100×10⁶程度の膨張ひずみを示 す。事前に使用材料を用いて、膨張材内割り添加量を 0、10、20kg/m³の3水準で拘束膨張・収縮試験¹⁾を 実施した。膨張材添加量と最大膨張ひずみの関係を図 -2に示す。収縮補償用の範囲に入るものとして、最 大膨張率 190×10⁻⁶の内割り 10 kg/m³の膨張材を選択し た。

2.3 鉛直パイプクーリングの施工方法

鉛直パイプクーリングは、パイプ配置を鉛直とした ものである。パイプの設置はリフトの高さに影響を受 けないため、高さ方向に打ち重ねていく構造物に適し ている。鉛直パイプクーリングの配管は、各リフトご とに躯体幅 2m の中心に長手方向に1列に、パイプ間 隔を 1m として設置した。クーリングパイプ設置状況 を**写真-3**に示す。

クーリングに使用したシース管径はφ60mm であり、 管内に内径 18mm のビニルホースを底まで差し込み送 水した。シース管上部でオーバーフローした冷却水は、 打設部上面の養生水となり、排水処理される。右岸側 と左岸側の壁体の同時打設で、クーリングパイプの本 数は 46 本となり、多量のクーリング水を必要とする ため、河川水を使用した。躯体の右岸および左岸の打 設リフト①~②の施工において河川水の温度は 12~ 22℃で、クーリング水量は 1 本当たり約 12~20L/min である。クーリング水量が比較的多いのは、送水ポン

表-3 ひび割れ低減対策一覧

	ひび割れ対策	目的
1	低熱高炉セメント B 種	温度上昇量の低減
2	膨張材	膨張ひずみによる収縮 補償
3	鉛直パイプクーリング	クーリングによる温度 上昇量の低減
4	型枠断熱材	コンクリート内部と表 面部の温度差の低減
5	ガラス繊維ネット	ひび割れ幅の拡大防止

図-2 膨張材添加量と最大膨張ひずみ

写真-3 クーリングパイプ設置状況

図ー3 打設リフト割と鉛直クーリングパイプ配置と計測位置 左:左岸側、右:右岸側

プ1 台当たり 23 か所の分岐配管で送水を行うことか ら、送水量の小さい時に生じる各水量のばらつきをな くすためである。

3. 計測方法と計測結果

3.1 計測器の配置

コンクリート打設のリフト割と鉛直クーリングパイ プ配置と計測位置を図-3に示す。計測は右岸側の壁 体で行った。計測項目を表-4に示す。

右岸リフト①-1 (リフト高さ 2600mm)の計測器の 配置を図-4に示す。平面図は、床版から 1600mm 高 さ位置である。熱電対はクーリングパイプ 2 本の中間 位置と、型枠表面から 100mm および 500mm の位置 に設置した。また、コンクリートひずみ計は、クーリ ングパイプ間隔の中心に、長手方向と短手方向に水平 に設置した。

立面図は、リフトの幅中心位置である。クーリング パイプは、床版上 400mm 上の位置から設置している。 熱電対をクーリングパイプ側面と、100mm 離れた位 置を組にして、床版から高さ 800mm (下段)、 1600mm (中段) および 2400mm 位置(上段)に設置 した。

また、クーリング水の取入れ位置と、クーリングパ イプの排出位置で水温を計測した。

3.2 計測結果

a. リフト①-1

リフト①-1 のクーリングパイプ 2 本の中間位置、 パイプ表面から 100mm 位置、パイプ表面位置の温度 および外気温の測定値を図-5に示す。リフト①-1 の打設温度は 25.5℃、ピーク温度 53.5℃である。外気 温は、11 月初めの打設日の 20℃から次のリフト①-2 打設の 20 日間で 10℃に低下している。

クーリングは、打設翌日から5日間実施した。クー リング水温は 17~22℃であり、クーリング水量は、1 本当たり 12L/min である。

クーリング開始と同時に、クーリングパイプ表面に

表一4 計測項目

設置位置	計測項目	計測 点数	計測機器
十 円 1 - 1	温度湿度	1	温湿度計
石	ひずみ	2	コンクリートひずみ計
9	温度	9	熱電対
クーリング	温度	1	取水位置
水	温度	1	パイプ上部吐出位置
断熱温度上	温度	1	外気
昇の測定	温度	1	試験体中心

○ 熱電対

コンクリートひずみ計

 \wedge

図-4 計測器の配置(右岸リフト①-1)

貼り付けた熱電対の値は 25℃に大きく下がり、パイ プ表面から 100mm 離れた位置の熱電対の値も、クー リングと共に下がっている。クーリングパイプ 2 本の 中間位置では、パイプから 500mm 離れているが、 クーリングの効果により、クーリング終了まで直線的 に下がっている。クーリング終了後は、パイプ表面と パイプ表面から 100mm の位置の温度は、クーリング パイプの中間位置の温度と同じになった。

型枠表面から 100mm の位置の熱電対の値を中間位 置および外気温と共に図-6に示す。型枠表面から 100mm の位置のピーク温度は中心部より 6℃低いが、 この温度差は、型枠断熱の効果により小さくなったも のである。型枠表面から 100mm の位置でも、パイプ クーリングの停止と共に温度低下勾配は小さくなって いるが、中心部に比べると影響は小さい。型枠脱型は、 脱型時の急冷を避けるために中心部の温度と外気温の 差が 15℃以内になってから行っている。

クーリングパイプおよび近傍の温度を図-7に示す。 クーリングパイプに貼り付けた熱電対の温度は、送水 と同時に低下している。パイプ表面から 100mm の位 置では、クーリング期間1日でそれぞれクーリング開 始時の温度から 8~10℃の温度低下が見られ、その後 はなだらかな温度低下となっている。

コンクリートひずみの測定値を図-8に示す。コン クリートひずみ計は、壁体長手方向と短手方向に水平 に設置した。短手方向は拘束が小さく445×10⁶、長手 方向は228×10⁶の膨張ひずみが得られた。この値は温 度ひずみを含んでいる。打設からの温度上昇が28℃ であり、低熱高炉 B 種コンクリートの線膨張係数が 12×10⁶/℃であることから、膨張ひずみの145×10⁶ と 合わせて481×10⁶のひずみが生じるので、短手方向は ほぼ自由膨張、長手方向は拘束により低減されている。 b. リフト①-2

リフト①-2 のクーリングパイプ 2 本の中間位置、 パイプ表面から 100mm の位置の温度および外気温の 測定値を図-9に示す。リフト①-2 の打設温度は 21.0℃、ピーク温度 45.0℃である。外気温は、11 月下 旬の打設日の 13℃から次のリフト②打設の 19 日間で 10℃に低下しているが、大きな変化はない。

クーリングは、打設翌日から5日間実施した。クー リング水温は 12~18℃であり、水量は 1 本当たり 20L/min である。

c. リフト②

リフト②のクーリングパイプ2本の中間位置、パイ プ表面から 100mm の位置の温度および外気温の測定 値を図-10 に示す。リフト②の打設温度は 19.0℃、 ピーク温度 44.0℃である。外気温は、12 月中旬の打 設日の8℃から、その後の経過に大きな変化はない。 クーリングは、打設翌日から5日間実施した。クー

(リフト①-1)

図-8 コンクリート実ひずみ (リフト①-1)

リング水温は 14~17℃であり、水量は 1 本当たり 10L/min である。急激な温度低下を防止するために水 量を絞っていることから、パイプ表面から 100mm 位 置の温度低下は緩やかである。

4. 温度応力解析による検討

4.1 壁体解析モデルによる温度応力の検討

床版コンクリートと壁体リフト①-1 の部分を取り 出した解析モデルを図-11 に示す。温度応力解析は 汎用構造解析コード"FEAST"(JIP テクノサイエン ス)を用いた。

解析条件を表-5に示す。解析ケース 1~4 におけ る外気温は一定値にしている。ケース 5 は、測定値 (図-6)を用いた。断熱温度上昇は、現場での断熱 箱試験体から逆解析により求めた。解析用強度は、現 場測定強度から設定した。呼び強度保証材齢は 56 日 である。

4.2 クーリングの熱伝達率

パイプ径 ϕ 60mm で、流量 12L/min の場合に、流速 は 7.1cm/sec になる。流速が 20 cm/sec 以下の場合に、 現状の熱伝達率の提案式では、適用範囲外になってい る³⁾。ここでは、パイプ近傍の測定結果から、試計 算で熱伝達率を算出し、86 W/m²℃と設定した。

4.3 解析結果の比較

壁体と床版の温度解析結果コンターを図-12 に示 す。クーリングパイプの周辺は温度が低下しており、 この部分のひび割れ指数は、温度の高い部分より大き い。解析結果の比較を図-13 に示す。左縦軸に、 ピーク温度を、右縦軸にひび割れ指数を示す。解析結 果は、センター断面の中央高さ位置のものを示した。

低熱高炉セメント B 種に膨張材を添加したものは、 高炉セメント B 種に比べて温度ピークを 67.8℃から 56.4℃に大きく下げ、ひび割れ指数を 0.74 から 1.04 に上げることができる。しかし、ひび割れ指数は目標 値「ひび割れの発生をできる限り制限したい場合 1.40 以上」に対して、まだ不十分である。パイプクーリン グを併用することで、温度ピークを 51.2℃に下げ、ひ び割れ指数を 1.82 に上げることができる。このひび 割れ指数は、「ひび割れを防止したい場合 1.85 以上」 に近い値である。

4.4 実施工と外気温、熱伝達率を合せた解析結果

リフト①-1の実際の外気温と熱伝達率を合わせて

図-10 壁体内部温度と外気温の測定値(リフト②)

図-11 壁体コンクリート解析モデル (床版とリフト①-1の計測箇所部分)

解	析ケース	解析項目	解析パラメータ	備考
		断熱温度上昇	$Q_{\infty}51.521$, r 0.986, t _{0,Q} 0.220 ²⁾	外気
1	高炉セメ ントB種	強度発現	係数a 8.363、係数b 0.849、fc40.3、S _f 0.42	温 20℃
		熱伝達率	側壁脱型前 8W/m ² ℃、 脱型後 14W/m ² ℃	一定
		断熱温度上昇	Q _∞ 38.50、 r 0.950、 t _{0,Q} 0.262	
2	低熱高炉 セメント	強度発現	係数 a 19.98、係数 b 0.641、fc 39.7、S _f 0.5	同上
	B種	熱伝達率	ケース1に同じ	
		膨張ひずみ	75×10 ⁻⁶	
	低熱高炉 セメント	断熱温度上昇・強	ケース2に同じ	
3	B 種・膨 張材	度光況・ ※広連半 膨張ひずみ	145×10 ⁻⁶ (ケース2と 合わせたひずみ量)	同上
	低熱高炉	断熱温度上昇・強 度発現・熱伝達率	ケース2に同じ	
4	B種・膨	膨張ひずみ	ケース3に同じ	同上
	張材	パイプクーリング	パイプクーリングのあ るモデル	
5	ケース 4 の外気温	外気温変化	7日まで20℃、7日~ 15日20℃~15℃、15 日~28日15℃~10℃	外気 温変
	・熱伝達 率小	脱型前熱伝達率小	側壁脱型前 6W/m ² ℃、 脱型後 14W/m ² ℃	化

表一5 解析条件

解析したケース 5 の温度の解析結果を図-14 に、ひ び割れ指数の解析結果を図-15 に示す。外気温は 20℃から 20 日間で 10℃に低下させている。

打設温度は 25℃、ピーク温度 51.5℃である。打設 20 日後のセンター中央部温度は 19℃で、実際の状況 を表せている。最小ひび割れ指数は、センター上部で

は2.19(打設後12日)、中央部と下部でそれぞれ1.75、 1.38(打設後28日)となった。パイプクーリングを 行ったことにより、計画通りのひび割れ指数に近いが、 実施工では打設日の外気温が予測より高いことによる コンクリートの打設温度の上昇と、その後の外気温低 下による壁体の収縮があり、ひび割れの抑制に不利な 条件となった。

5. ひび割れ低減効果のまとめ

ひび割れは、左岸側リフト①および右岸側リフト① -1の壁体に、打設リフト高さに近い 2~4mの間隔で、 軽微な 0.1~0.3mm 幅程度のものが観察された。これ らは打設から約 2 週間経過して発生し、上部リフトの 打設以前に発生したものである。ひび割れは超音波測 定の結果、鉄筋かぶり程度の深さと確認された。また、 外部拘束の小さくなるリフト①-2 とリフト②では、 ひび割れの発生本数は下部のリフトに比べて少ないも のとなった。

ひび割れ低減対策から、次の結果が得られた。

- i. 低熱高炉セメント B 種と膨張材の使用および 鉛直パイプクーリングの適用により、コンク リートのピーク温度を抑えることができ、ひび 割れ指数の増大が得られた
- ii. かぶり部分に軽微なひび割れは生じたが、温度
 応力による有害なひび割れは発生せず、ひび割
 れ低減効果が得られた
- iii. 壁体コンクリートの計測と温度応力解析の比較
 によって、効果の大きさを定量的に検討し、それぞれの対策の有効性を確認できた

6. あとがき

本構造物は、スラブ上にマッシブで延長の長い壁体 を打設するという、ひび割れ抑制の難しい構造物で あったが、低熱高炉セメント B 種と膨張材および鉛 直パイプクーリングを組み合わせて、ひび割れを抑制 する効果が得られた。また、壁体コンクリートの計測

図-15 ひび割れ指数の解析結果 (ケース 5)

と解析の比較によって対策の効果を評価し、有効性を 確認できた。

本検討を進めるに当たり、国土交通省九州地方整備 局大隅河川国道事務所のご指導を賜ったことに深く感 謝する。

【参考文献】

- JIS A 6202 コンクリート用膨張材 付属書 2「膨 張コンクリートの拘束膨張及び収縮試験法」B法
- 2) 「マスコンクリートのひび割れ制御指針 2008」、日本コンクリート工学会
- 3) 溝淵利明、二塚保之、村尾義則「パイプクーリン グによるひび割れ抑制対策効果に関する研究」、土 木学会論文集 No.665/VI-49、pp.147-163、2000.12

シールド切羽可視化システムの構築

Development of a System for Visualizing Geological Components at the Face of a Shield-driven Tunnel

木下茂樹* 外木場康将* 宇留間高広** 榊原光義***

要旨

近年、都市部において立坑用地の問題や地下埋設物の輻輳を避けるために、シールドトンネルの長 距離化の傾向がある。そのため、掘進中に地盤変化に遭遇する場面が増え、地質条件に応じた掘進管 理が一層重要となっている。一般的に密閉型シールドでは、土質の変化は排土性状、切羽土圧やカッ タートルク値などで評価されている。しかし、これでは切羽面の地盤構成をその平均として捉えるこ ととなってしまう。その結果、切羽の地盤構成を把握せずに掘進することとなり、硬質地盤に遭遇し た場合などにはシールド機の乗上げ・横滑りなどが生じ、縦断・平面線形の確保が困難となる。

本研究では、シールド面板に取り付けた加速度計の計測値を利用した地盤評価手法を応用し、シールドの径・種類に関係なく、切羽の地盤構成を図化することで面的に評価できる「切羽可視化システム」を構築した。また、直径 2.36m の泥土圧シールドに本システムを適用し、掘進途中の土質変化、ならびに切羽地盤構成を評価した事例について報告する。

キーワード:シールド、地盤変化、加速度計、切羽可視化

1. まえがき

都市部では、通信・ライフライン等の地下インフラ整 備事業が積極的に推進されている。その主役を担うシー ルド工法によるトンネルの築造では、発進・到達立坑の 用地問題等を理由に、長距離施工が要求される傾向にあ る。下水道や上水道では1スパンで4~5km、道路トン ネルにおいては1スパンで5~10kmの掘進も珍しくな い。

一方、長距離の掘進では、掘進中に地盤の変化に遭遇 する場面も増え、切羽の土圧・泥水圧管理や添加材・泥 水品質管理が難しくなることから、切羽の安定を確保す る上で、地盤構成を把握することが重要となる。

このような背景より、密閉型シールドにおいては、 「見えない切羽」の地盤構成を正確に把握することが、 長距離掘進における安定した掘削や地盤変状を抑制する ことに寄与するものと考えられる。

本研究では、加速度計をシールド面板に取り付けて、 掘進中に回転する面板の外周で応答加速度を連続計測し、 地層の変化を把握することを目的とした。そこで、リン グごとに収集した掘進途中の応答加速度を、シールド路 線の延長方向にコンター図で整理することで、掘削した 地盤の実績を把握する手法を新たに考案した。加えて、 切羽地盤構成の判定履歴から、掘進中の切羽前方の地盤 構成を予測することにも取り組んだ。 以下に、開発の経緯、試験施工での検証結果、実施 工における計測と地盤構成評価について報告する。

2. 開発経緯

2.1 既往の研究と計測手法の検討

過去において、切羽の地盤構成を把握する技術として、 大口径シールドに加速度計を取り付けた特殊ビットを用 いて切羽の地盤構成を評価した実績がある¹⁾。

この技術は、球体式ビット交換システムを有したシー ルド外径 9,450mm、延長 4,435m の泥水式シールドに適 用され、ビット交換位置の地盤構成の把握に役立てた。 結果として、ボーリング調査から求めた土質分布と一致 する正確な地盤判定が行えた(写真-1)。

写真ー1 球体式ビット交換を採用したシールド

* 東日本支社土木技術部 ** 東日本支社土木第2部 *** 東日本支社名古屋支店

しかし本技術は、事前の室内試験で確認した対象土の 切削時振動波形と切羽切削ビットの振動波形数を比較し て土質判定を行うものであり、装置が大きく中小口径や 面板型シールドに適用できないといった課題点があった。

また、ビット交換位置の地盤判定を目的としていたこ とから、計測頻度やデータ集積に連続性がなく、掘進の 地質実績や切羽前方の地質予測に応用することまでは、 開発要素に組み込まれていなかった。

2.2 計測手法の検討

既往の研究における課題点を踏まえて、本研究では、 中小口径のシールドまで応用することを考慮した計測方 法を検討した。特に、シールド面板の切削ビットに加速 度計を取り付けることによって切羽の地盤構成を把握す ることを目的としているため、シールド面板の回転数に 応じた計測頻度や範囲の設定が重要と判断し、以下の対 応を実施した。

a. カッター回転に伴う計測頻度の設定

回転するシールド機の面板外周における加速度の計測 では、その計測角度間隔(*A*θ)はデータ収集の時間間 隔(*A*t)とカッターの回転速度 r (**pm**)から決まる。 中小口径シールドでは、カッターの回転速度が速いこと と、*A*t を小さくしてデータ個数を多く得たいことから、 計測時間間隔を 0.1s に設定して収集を行った。また、 加速度計の円周上の切削位置(*θ*°)を把握するため、セ ンターシャフトに接点スイッチを設置し、シールド天端 をゼロ点として毎回通過時にリセット処理できるように した。

> [データ収集間隔] $\Delta \theta = r/60 \times \Delta t \times 360^{\circ}$ [設定した計測間隔] $\Delta \theta = 6.0/60 \times 0.1 \times 360^{\circ} = 3.6^{\circ}$ r: マシン設定の最大値 6 (rpm)

b. 計測データの収集方法

加速度データを連続的に収集する方法としては、AC 出力と DC 出力があり、収集したい計測項目やシール ドマシンのスペックに応じて、出力を選択する必要が ある。AC 出力は加速度データそのものを出力するた め、加速度の大きさや波形を計測できる。これに対し、 DC 出力では移動平均法により平滑化処理した加速度 の大きさ(cm/s²)を計測する。

小口径シールドの場合、上述したように 0.1s の計測 間隔でも角速度が 3.6°となるため、データ転送速度の 関係から AC 出力の採用が困難である。一方で、DC 出力においては、単位時間内の加速度の大きさをデー タ平滑化回路を導入して出力すれば、データ量が圧縮 され、データ転送が可能となる。

今回のシステムでは、DC 出力を採用し、データの 平滑時定数 2r を 0.1s と設定し、0.1s ごとの計測時間間 隔に適応させ、加速度値を収集する。

c. 加速度データの集積

専用アンプから DC 出力された信号は、制御盤、シー ケンサ盤を通過することで、その他の掘進管理データと 同じ伝送システムを通じて、運転管理室に送られる。運 転管理室では、計測された加速度値と掘進管理データを 計測時間ごとに整理し、掘進リング No で紐付けした データとして保存する(図-1)。

3. 実機試験

実施工に先立ち、シールド機に装着した加速度計の取 り付け確認と計測システムの動作・感度確認を目的とし、 実機試験を実施した。以下に、実機試験の概要と結果を 示す。

3.1 加速度計の取り付け

カッターの回転に合わせて面板外周部で加速度を計測 するため、加速度の大きさはカッターの回転速度とシー ルドジャッキの伸長速度に依存することが予想される。 これらの影響を把握するため、2 軸(X 軸、Y 軸)によ る加速度計測を実施する。

- i.X軸の計測方向(図-2)
 計測軸を面板外周接線方向に設定する。これにより、カッターの回転速度の影響が把握できる
- ii. Y 軸の計測方向(図-2)
 計測軸をシールド軸方向に設定する。これにより、
 シールドジャッキの伸長速度、押付け圧の影響が
 把握できる

また、取り付け位置は①切羽センサーとしてカッタ

図-2 加速度計の取り付け位置

ヘッド外周部に1箇所、②隔壁センサーとして隔壁部に 1箇所取り付ける。なお、隔壁部センサーによる計測は、 シールド機から発生する機械振動、およびノイズのキャ ンセルを目的としている。

3.2 計測条件

a. 計測時期

掘進開始より、シールドジャッキまたは推進ジャッキ ストローク 100mm 時点から自動計測を開始する。

b. 計測回数

1 リング分の掘進は、セグメント幅で 750mm となる。 この掘削区間におけるカッターの回転数はシールド ジャッキの伸長速度とカッターの回転速度から、

 $N=750/s \times r$

s:ジャッキ速度 (mm/min)

r:カッター回転速度 (rpm)

であり、N=50~150(回)の範囲となる。

この条件を考慮し、計測では1リング分の掘削ごとに カッター回転数のうち5回転分を自動計測する。

c. 計測項目

計測データは、上記の5回転分の計測値に関して、各 リングごとの切羽、隔壁のX・Y(図-2)の2方向を 自動記録するものとする。また、X・Yの2方向ともに 5周分の平均値を計算し、システムにグラフ化する。

3.3 計測結果

a. CASE1:無負荷回転時における計測

実施工で想定されるカッターの回転数を3段階で設定 し、無負荷状態でカッターと隔壁の加速度計測を実施し た(**表-1**)。

図-3より、隔壁の計測結果は、回転数と加速度の間 には正の線形関係があることを示している。これは、加 速度計の位置がカッターモーターに近いので、モーター の稼働による振動の影響を強く受けていると判断できる。

~	. //// 22				
回転数		振動計	\cdot (cm/s ²)		
(rpm)	カッタ	ヘッド	ß	鬲壁	
	Х	Y	Х	Y	
2.3	48.3	68.3	119.3	53.7	
3.6	57.8	109.1	231.9	104.1	
5.6	86.6	104.3	434.7	191.1	

500 450 カッタヘッド振動計X 400 カッタヘッド振動計Y 350 (cm/s^2) 隔壁振動計X 300 隔壁振動計Y 250 200 加速度(150 100 50 0 0.5 2 2.5 3 3.5 4 0 1 1.5 4.5 5.5 回転数(mm) 図-3 無負荷での加速度計測結果

また、カッターにおける応答加速度は、隔壁に比べて 回転数との相関が低く、特に無負荷であるため X 方向 は回転に影響がみられない。なお、カッターモーターの 稼働による応答加速度は、50~100cm/s² 程度と小さい結 果となった。

b. CASE2:連続衝撃を与えた計測

面板に伝搬する切削振動がカッター加速度計の取り付 け位置に及ぼす影響と、その時の加速度計の計測値の大 きさを評価するため、加振器で連続衝撃を与えたうえで、 カッターの回転中の加速度計測を実施した。

加振には、連続衝撃として高周波バイブレータを使用 した。また、カッターは一定速度で回転(3.6rpm)させ、 加振位置は面板外周で1点に固定した(**写真-2**)。

図-4に、連続衝撃を加えた状態での加速度と面板の 回転角度の関係を示す。図中の赤点線は、加振器の位置 を示している。なお、加振器による連続衝撃は、430~ 790°の間で面板の1点に与えた。

図中の1周目(70~430°)、および3周目(790~1150°)は、加振しない無負荷時の計測値となり、100cm/s²前後で前実験と同様の結果を得た。

加振器の位置を加速度計が通過する時点(430°、 790°)が最も大きい加速度(2,000cm/s²)となる。また、 回転により加振器と加速度計が180°の相対関係となる 時点で、加速度は最小となり、300cm/s²程度を計測した。 したがって、面板を伝搬する振動は、2,000cm/s²を超え る振動に対して約15%の影響に留まるといえる。

3.4 実機試験結果

上述の実機試験の結果から、以下の知見を得た。

写真一2 加振状況

- i.モーター稼働の振動がカッタヘッドに与える影響 は 50~100cm/s² 程度で、計測レンジに対して問 題とならない
- ii. 面板の振動伝搬は、振動源から 180° で約 15%程度の影響に留まるため、円周の連続計測に対しては影響するが、土質の違いの判断には悪影響を及ぼさないと判断できる

4. 実施工適用

4.1 実現場適用の概要

a. 適用現場の緒元

加速度計を利用した切羽可視化システムを下水道シー ルド工事で採用し、掘進の全延長でリングごとに計測し た。適用した工事の工事概要を表-2に示す。

また、土質調査による土質縦断図を図-5に示す。こ の図より、発進地点は礫質土であり、路線後半になるに つれ風化岩へと変化し、到達地点では花崗岩となってい る。

13	2 工事110 女
下	水道管渠築造工事
工法	泥土圧ミニシールド
掘削外径	2,360mm
セグメント内径	1,800mm (二次覆工省略型)
一次覆工延長	1,266.5m
掘削対象地盤	砂礫層、風化花崗岩層
3	到達立坑 和 計 日
	工法 掘削外径 セグメント内径 一次覆工延長 掘削対象地盤

表ー2 工事概要

b. データの表現方法²⁾

シールド機のカッタフェイスは**写真-3**に示した面 板タイプで、加速度計を図中 A の位置に配置している。 加速度データは、加速度ー切削位置のグラフによる 整理と、切羽断面を模した円の外周にリング状に配置 した図を用いて表現する。この方法は、過去の評価し た事例に倣っている。

また、評価については、 応答加速度の違いにより、 シールド切羽面の地盤構成 をリングごとに行う。

当現場に適用した計測の 仕様については、過去の実 績¹⁾をもとに、計測レン ジは0~2100cm/s²、最小計 測値を0.5cm/s²と設定した。

写真-3 シールド機面板

1 リング当たりの計測は、掘進開始よりシールドジャッ キ、または推進ジャッキストロークが 100mm 進んだ時 点から開始し、5回転分計測する。

4.2 断面土質判別

図-6は、図-5の地点 A における応答加速度の計 測結果である。地点 A は、土質縦断図では礫質土であ るが、排土の粒度分析結果では、2.0mm 以上の礫含有 率が 23%の砂質土であった。計測結果は、応答加速度 が 33cm/s²~350cm/s² と、非常に小さな値を示している。 一方、図-7は、図-5の地点 B における応答加速度 の計測結果である。排土の粒度分析結果では、2.0mm 以上の礫含有率が 67%で、礫層の卓越した地盤である。 応答加速度が、77cm/s²~2,085cm/s² と幅が広く、大きな 値を示す。以上の結果より、応答加速度の傾向と実際の 粒度分析結果が合致していると判断できる。

4.3 地盤変化の把握

本システムの目的の一つである切羽地盤構成、および 地盤変化の把握に関して、実施工で確認した中で特徴的 な区間の結果を示す。

図-8~10は、掘進95リングから135リングにかけ ての加速度計の円周上での計測結果である。95リング

(図-8)では、切羽全周で 33~350cm/s²の応答加速 度を計測しており、シールド前面の土質が一様で、排土 性状から砂質土であることが判別できた。また、40 リ ング進捗した 135 リング(図-10)では、断面の上部 30%程度に加速度応答が 2,000cm/s²に達する地盤が出現 しており、その部分は、同じく排土性状から礫質土であ ると判断できる。

これらの結果から、本システムは、切羽地盤の掘進に 伴う経時変化の把握に有効であるといえる。また、断面 外周で角度ごとに加速度の違いが確認できるため、加速 度が同等(同一の土質)と判断できる左右の計測点を断 面内で区分するように線で結合すれば、断面内における 切羽地盤構成を模擬的に可視化できる(図-11)。

図-11 地盤構成可視化画面(1077 リング)

4.4 地質実績図の作成

本システムでは、シールド掘進の1リングごとに加速 度データを集積しているため、それをシールド路線方向 に整理すれば、掘削路線の加速度変化の実績が得られる。

図-12は、シールド天端部と下端部の加速度における5回転分の平均値を、掘進リングごとに繋げたグラフである。同一リングで、青線で表した天端部と赤線で表した下端部に差が読み取れる部分(120、250、1050リング付近)には、地質境界が存在する。特に4.3で述べた90~140リング付近で天は、端部に遅れて下端部の加速度が徐々に大きくなる結果が読み取れる。

次に、掘進履歴として地盤の応答加速度を断面内で鉛 直方向に評価することで、地質実績をコンター図で表現 する。表現方法を以下に示す。

- i. 各リングにおける加速度計測値を、シールド断面 (φ2.36m)の鉛直方向に 15 分割し、左右の平均 値を計算したうえで、データを整理する
- ii. 加速度を計測レンジ 0~2,100cm/s² でコンター表示し、ボーリング柱状図より得られた地質縦断図の掘進場所に応じて、重ね合わす(図-13)

今回のシールド路線の掘進結果を、この方法で整理したものが図-13 である。結果を詳細に観察すると、同じ断面内でも、鉛直方向で応答加速度の計測値に大きな差異が表れている。これは、礫質土の特徴ともいえ、加速度計のビットが礫部を掘削するときに大きな応答値を示すからである。

一方、図-13 の区間①は礫質土の中でも、断面内の 鉛直方向のコンターに差異が小さい。これは、礫質土層 の地盤形成時に、河川堆積物である礫が山部ではなく、 谷部に堆積したものと推測でき、きわめて興味深い結果 である。

4.5 前方予測

本システムでは、切羽地盤構成の判定履歴のうち任意 に指定した直前リング数で、土質境界と判断できる同等 の加速度帯を掘進方向に繋ぎ合わせ、その延長線から前 方を予測する³⁾。図-14 に図-13 の地点②に示す「礫 質土と風化花崗岩の境界部」の地盤判定と前方予測結果 を示す。1074 リングから切羽に向かって右下より風化 花崗岩が出現し始め、1077 リングでは、切羽の約 1/3 が風化花崗岩となっている。また、図-14 における右 側に表示された断面構成は 5m 前方の切羽予測となる。 予測では、切羽の 50%近い部分が風化花崗岩になるこ とが示されている。

図-14 地盤構成判定と前方予測

なお、1077 リングでは、ビット交換のために切羽隔 壁内の土砂を除去して、実際の切羽地盤構成を確認した (図-15)。実際の切羽は、砂礫層、風化花崗岩層、花 崗岩層で構成されており、システムでは、土質の違いは 把握できるが(図-15 の 1077 リング)、風化の程度を 含めた岩盤強度の違いの判別までには至っていない。

図-15 1077 リングの実際の切羽岩盤線

5. あとがき

長距離化の傾向にあるシールド工事において、掘進 管理の高度化を図るために、切羽の地盤構成を把握す る切羽可視化システムを構築した。本システムでは、 シールド外周部の切削ビットでカッターの回転を利用 して加速度を計測し、掘進管理データと合わせて記録 する方法を採用し、小口径シールドの実現場で実用化 できている。

応答加速度の計測結果は、掘削地盤の砂質土と礫質 土の違いを明確に捉え、切羽断面を模した円の外周に リング状に配置した図を掘削中にリアルタイムで表示 することが可能となった。これは、地盤の変化を把握 して、的確な掘進管理を行ううえで有効であると判断 している。また、掘進予定の地盤構成予測、計測結果 の縦断方向での評価についても本システムで可能と なった。

なお、現在のところ、応答加速度の計測結果から風 化の程度や岩盤強度の違いを把握するまでには至って いない。今後、切削ビットをローラービットに交換し た後、岩盤掘削時の応答加速度の詳細な分析を行い、 取り組む予定である。さらに、シールド工事での積極 的なシステム導入を図るとともに、切羽が可視化でき る利点を活かした切羽土圧や裏込め注入圧の設定等に 役立てていきたい。

本開発を行うに当たりご指導・ご協力頂いた関係各位に深謝する。

【参考文献】

- (篠原茂他、「シールド掘削時の切羽土質分布の判明」、 土木学会、トンネル工学報告集 Vol.10、pp.337-342、 2000.11
- 2)外木場康将他、「シールド切羽可視化システムの構築と実現場への適用(その1)」、第69回土木学会年次学術講演会、投稿中、2014.9
- 3)木下茂樹他、「シールド切羽可視化システムの構築 と実現場への適用(その2)」、第69回土木学会年 次学術講演会、投稿中、2014.9

オゾンマイクロバブルによるVOC・油の高速分解 High-speed Decomposition of Volatile Organic Compounds and Oil Using Ozone Microbubbles

要旨

長 千佳* 白石祐彰**

近年改正された水質汚濁防止法や土壌汚染対策法の施行を契機として、揮発性有機化合物 (VOC)や油による土壌や地下水の汚染が数多く確認されている。これらは主に掘削除去や地下水 揚水処理工法により浄化されているが、掘削に伴い発生した地下水や表面水、揚水井戸などから発 生した排水は、汚染の拡散防止のため、適切に処理しなければならない。

現在、主に採用されている排水処理方法は、処理に時間がかかることや、ランニングコストが高価となることが問題になっている。そこで、酸化力の強いオゾンを利用した酸化分解技術に着目し、 VOC や油の高速で酸化分解処理する技術を開発した。

本技術の特徴は、オゾンをマイクロバブルとして注入することで、水中に長時間滞留して酸化反応を継続させることにより処理時間を短縮することができ、さらに、従来のフェントン法や空気をマイクロバブルとして使用する方法では分解が困難とされていた潤滑油、冷却油、エタン系の処理 も可能となったことである。また、短時間で分解できるため、一定の処理時間の確保が必要な反応 槽等の設備をコンパクトにすることができ、さらに、薬品をほとんど使用しないことや汚泥の発生 量が少ないことから、ランニングコストを大幅に削減できる。

キーワード:揮発性有機化合物、油、酸化分解、オゾン、マイクロバブル

1. まえがき

近年、自治体や事業者、土地所有者が実施する土壌汚 染状況調査や地下水調査では、揮発性有機化合物 (VOC)や重金属、油分による汚染が数多く確認され ている。

平成 24 年の水質汚濁防止法の改正では、地下水汚染 を未然に防止するため、有害物質を使用・貯蔵等する対 象施設の拡大や、地下への浸透を防止するための構造等 に関する基準、遵守義務や定期点検の義務が追加された ¹⁾。また、平成 22 年の土壌汚染対策法の改正では、一 定規模 (3,000m²) 以上の土地の形質変更時の届出義務 が追加され、自然由来の汚染も同法に含まれるように なった²⁾。

これらの法律に基づく点検や調査によって土壌・地下 水汚染が確認されると、人の健康被害の防止の観点から、 状況に応じた適切な措置が求められる。この場合、措置 中は地下水汚染の拡散防止策が必要になる。掘削除去

(土壌汚染の除去措置)では、掘削面以下へ地下水位を 低下させることや、汚染土壌と接する雨水と掘削面から の湧水の集水・処理を行うことが必要になる。

掘削除去の措置中やバリア井戸等による地下水汚染の

*西日本支社環境技術部 **技術研究所

拡散防止技術では、揚水工法が措置工法全体の 70%程 度を占めている³⁾。現在、地下水の揚水により発生す る排水の処理は、VOC では曝気活性炭吸着、油では産 業廃棄物処分が一般的であるが、これら処理方法の問題 は、処理時間が長い、コストが高いという点である。

本論では、土壌汚染対策や地下水浄化措置の排水処理 を短期間、低コストで処理することを目標とした施工法 「オゾンマイクロバブルを用いた VOC・油の高速分 解」について報告する。

2. 技術の概要

本技術では、VOC や油の土壌汚染対策において適用 事例の多いフェントン工法に着目し、フェントン工法に おいて酸化剤として使用している過酸化水素に代えて、 酸化力のより強いオゾンを使用することで、難分解物質 の分解や、処理時間の短縮が可能となると考えた。さら に、オゾンをマイクロバブルにして水中に注入すること で、水中に長時間滞留して酸化反応(OH ラジカル反 応)を継続できるため、処理時間を短縮できると考えた。 オゾンによる酸化反応の原理を図-1に、酸化剤ごとの 酸化電位を表-1に示す。酸化電位はその物質が他の物 質をどの程度酸化させやすい状態にあるのかを定量的に 表す尺度で、活性酸素の中では OH ラジカルが最も強い 酸化力を持っており、有機物中の結合を完全に切断する ことが可能である⁴。

また、マイクロバブルには以下の特徴がある。

- i. 気泡径が 50 µm 以下
- ii. 内圧が高いため、水中に長時間滞留してゆっくり と上昇しながら収縮する
- iii. コロイドとしての性質を持つ(マイナスに帯電)

iv. 消滅(圧壊) する際にフリーラジカルを発生する

分解処理は、ベンゼン、エチレン系、ガソリン、軽油、 灯油、重油に加え、従来のフェントン法やオゾンマイク ロバブルでは分解が困難とされていた潤滑油、冷却油、 エタン系も対象とした。

3. 実験装置

実験装置を製作し、オゾンマイクロバブルによる VOC と油の分解実験効果の確認を行った。オゾンマイ クロバブルによる分解処理の概要を図-2に示す。分解 処理は、1次処理(pH 調整)後の汚染水にオゾンを注 入した後にラインミキサーを介すことでオゾンをマイク

	+ Fe ²⁺ 鉄イオン H ₂ 0 分解 H OH 00 C C C C C C C C C C C C C C C C C C	・0H + 0H- ビド ロキシル ラジカル ・H ・0) + (Fe ²⁺)
1	表ー1 酸化剤ごと	:の酸化電位 ⁴⁾	1
	酸化剤	酸化電位(V)	
	OH ラジカル	2.80	
	オゾン	2.07	
	過酸化水素	1.77	
	過マンガン酸	1.51	
	次亜鉛素酸	1.50	
	塩素	1.36	
	酸素	1.23	
汚染水(1次処)	マイクロバブル発生器 (ラインミキサー)	攪拌機反応槽 2	次処理槽へ

図-2 オゾンマイクロバブルによる分解処理の概要図

ロバブルにし、その後、反応槽内で攪拌しながら一定の時間、VOC や油を酸化反応させる。反応後、二次処理 (pH 調整)して排水する。

装置(**写真-1**参照)は、オゾン発生装置、マイクロ バブル発生器(ラインミキサー、**写真-2**参照)、反応 槽、2次処理槽で構成される。

4. 予備実験

4.1 模擬VOC汚染水の作成

VOC 汚染水の入手が困難であることから、実験では 模擬 VOC 汚染水を作成して実験を実施した。

模擬 VOC 汚染水は、所定の濃度(環境基準の 10~30 倍程度)となるように蒸留水(または水道水)に標準試 薬を滴下して作成したが、実験時の初期値は設定濃度の 5 割程度となった。実験の初期値としては、濃度低減は 問題ないが、その原因が装置壁面への付着の場合には、 ライニング等の対策を検討する必要が生じるため、実験 により原因を特定した。その結果、所定の濃度と初期濃 度の差の原因は攪拌子や容器への付着ではなく、VOC が水に溶解される過程での揮発の影響であると推定され た。また、VOC は溶解して水溶液になると、蒸気圧の 著しい低下により蒸発しにくくなるため、溶解した VOC 水溶液を攪拌しても VOC 濃度はほとんど変化し ないことを確認した。

4.2 オゾン供給量の設定

オゾン供給量を設定するため、テトラクロロエチレン

写真-1 実験装置(全景)

写真-2 実験装置(ラインミキサー)

を用いて、オゾン供給量を3ケース設定し、濃度変化への影響を確認した。実験結果を表-2に示す。

オゾン供給量 5.0g/hr と 15g/hr、25g/hr の濃度変化に 差が見られ、5.0g/hr ではオゾン供給量が不足していた ものと考えられる。実験の結果を考慮し、オゾン供給量 は使用発生器の最大値 25g/hr に設定した。

5. 分解確認実験

5.1 実験の概要

ベンゼン、エチレン、エタン等の各 VOC 水溶液に対 し、反応助剤である鉄触媒(硫酸鉄(II) 七水和物)の 添加の有無による分解効果と、分解における pH 依存性 (反応時の pH を酸性・中性・アルカリ性に設定)を確

認した。pH 調整剤には苛性ソーダおよび希硫酸を用いた。

a. 鉄触媒添加実験

反応性を高めるため pH を 3.0 (酸性) に調整し、鉄 触媒添加量は、0mg/L および 30mg/L の 2 水準として VOC の分解実験を実施した。

b. pH依存性確認実験

鉄触媒は添加せず、pH を 3.0 (酸性)、7.0 (中性)、 10.0 (アルカリ性)の3水準として VOC の分解実験を 実施した。

5.2 VOC の分解確認実験

a. ベンゼンの分解確認

鉄触媒添加の有無および pH の違いによるベンゼン分 解効果の確認実験結果を表-3に、残存率を図-3に示 す。

実験結果から、鉄触媒の添加は不要と判明した。また、 pHの違いによる分解速度の差は見られなかった。

b. エチレン系の分解確認

エチレン系の分解確認は、トリクロロエチレン、テト ラクロロエチレン、シス-1,2-ジクロロエチレンを対象に 実施した。

(a) トリクロロエチレン

鉄触媒添加の有無および pH の違いによるトリクロロ エチレン分解効果の確認実験結果を表-4に、残存率を 図-4に示す。

実験結果から、鉄触媒の添加は不要と判明した。また、

表-2 オゾン供給量実験結果 (テトラクロロエチレン)

おい山山昌		潴	農度(mg/L)	
4/ 7吐山里	分解前	1 分後	3 分後	5 分後	10 分後
5.0g/hr	0. 0086	—	—	0.0084	0. 0039
15g/hr	0.01	0. 0038	0.0006	<0.0005	<0.0005
25g/hr	0. 0063	0. 0028	<0.0005	<0.0005	<0.0005
地下水環切	竟基準:0.	01 mg/ L	定量下限	值:0.000	5 mg/ L

pH が 3.0 (酸性) と 7.0 (中性) の条件時に、分解時間 が短くなることを確認した。

表-3 実験結果(ベンゼン)

	研究加	ъЦ		湜	矏度(mg∕L)	
	政保利利	рп	分解前	1 分後	3 分後	5 分後	10 分後
	あり	3.0	0.077	0.021	<0.001	<0.001	<0.001
パタ	なし	3.0	0. 022	<0.001	<0.001	<0.001	<0.001
$^{-}_{\nu}$	なし	7.0	0.13	<0.001	<0.001	<0.001	<0.001
	なし	10.0	0.034	0.001	<0.001	<0.001	<0.001
	地下水现	景 境基注	隼:0.01 n	ıg/L 定	量下限值	: 0.001 mg	g/ L

表-4 実験結果(トリクロロエチレン)

	継浜市	ъU		潴	農度(mg∕L)	
	野大小小川	рп	分解前	1 分後	3 分後	5 分後	10 分後
	あり	3.0	0.082	0.004	<0.002	<0.002	<0.002
パタ	なし	3. 0	0.11	<0.002	<0.002	<0.002	<0.002
$ \\ \rangle$	なし	7.0	0.1	<0.002	<0.002	<0.002	<0.002
	なし	10.0	0.13	0.02	0.015	0.007	<0.002
	地下水環	境基準	館:0.03	mg/L 坈	三量下限值	: 0.002 n	ng/ L

(b) テトラクロロエチレン

鉄触媒添加の有無および pH の違いによるテトラクロ ロエチレン分解効果の確認実験結果を表-5に、残存率 を図ー5に示す。

実験結果から、鉄触媒の添加は不要と判明した。また、 pHが7.0(中性)における分解効果が高く、地下水環境 基準の数倍程度であれば、実験開始1分後には90%程 度分解され、環境基準を満足した。

(c) シス-1, 2-ジクロロエチレン

トリクロロエチレンおよびテトラクロロエチレンの実 験結果をもとに、シス-1,2-ジクロロエチレンを用いて、 鉄触媒なしおよび pH が 7.0 (中性)の条件で分解確認 実験を実施した。その結果、地下水環境基準の数倍程度 であれば、実験開始1分後には90%程度分解され、環 境基準を満足した。

c. エタン系の分解確認

エタン系の分解確認を、1,1,1-トリクロロエタン、1,2-ジクロロエタンを対象に実施した。

オゾン供給量は使用発生器の最大値 10g/hr とし、分 解時間を最大60分で、分解状況を確認した。(ベンゼン、 エチレン系の実験ではオゾン供給量は使用発生器の最大 值 25g/hr)

(a) 1,1,1-トリクロロエタン

pH が 3.0 で鉄添加あり、および pH が 7.0 (中性) で 鉄添加なしの条件における、1,1,1-トリクロロエタン分 解効果の確認実験を実施した。その結果(濃度と残存 率)を図-6に示す。

鉄触媒添加の有無の実験ケースにおいて、初期濃度は、 地下水環境基準(1mg/L)の数倍である。実験開始 30 分後には、両者において環境基準を満足する結果が得ら れた。また、残存率の低減の推移から、鉄添加のあり、 なしは分解効果および速度に影響せず、1,1,1-トリクロ ロエタンの分解において、鉄触媒の添加は不要と判明し た。

(b) 1.2-ジクロロエタン

pH が 3.0 (酸性) で鉄添加あり、および pH が 7.0 (中性)で鉄添加なしの条件における、1,2-ジクロロエ タン分解効果の確認実験を実施した。その結果(濃度と 残存率)を図-7に示す。

鉄触媒添加の有無の実験ケースにおいて、初期濃度は 下水道排水基準(0.04mg/L)の 10 数倍である。実験開 始3分後には、残存率は50%以下に低減したが、その 後の分解速度は緩やかで、実験開始 40 分後に鉄添加な しが下水道排水基準を満足する結果が得られた。鉄添加 ありは、実験開始 40 分後においても、下水道排水基準 の数倍までしか分解されず、残存率は 20%程度という 結果となった。1.2-ジクロロエタンの分解において、鉄 触媒の添加は不要と判明した。

表-5 実験結果(テトラクロロエチレン)

	紀治	ъЦ		澧	矏度(mg/L	.)	
	亚大约3.70	рп	分解前	1 分後	3 分後	5 分後	10 分後
	あり	3.0	0.035	0.025	0.0022	0.0021	0.0017
パタ	なし	3.0	0.07	0.018	0.013	0.01	0.0085
$\overset{ }{\sim}$	なし	7.0	0.048	<0.0005	<0.0005	<0.0005	<0.0005
	なし	10. 0	0.11	0. 043	0.057	0.016	0.01
	地下水環	境基準	: 0.01 m	g/L 定:	量下限値	: 0. 0005 1	ng/L

図-6 濃度と残存率(1,1,1-トリクロロエタン)

10

0

図-7 濃度と残存率(1,2-ジクロロエタン)

17	对象物質	ベンゼン	トリクロロエチレン	テトラクロロエチレン	シスー1,2-シ [°] クロロエチレン	1,1,1-トリクロロエタン	1,2-ジクロロエタン	ジクロロメタン	四塩化炭素
高速	分解の可否	高速分解可能	高速分解可能	高速分解可能	高速分解可能	分解可能	分解可能	分解不可	分解不可
	pH調整	不要	不要	中性	中性	中性	中性	-	-
浄	原水濃度	地下水環境基準の 数倍~10数倍	地下水環境基準の 数倍	地下水環境基準の 数倍	地下水環境基準の 数倍	地下水環境基準の 数倍	下水道排水基準の 13倍程度	地下水環境基準の 数倍	地下水環境基準の 数倍
化の程	処理水 濃度	地下水環境基準を 満足	地下水環境基準を 満足	地下水環境基準を 満足	地下水環境基準を 満足	地下水環境基準を 満足	下水道排水基準を 満足	濃度低減なし	濃度低減なし
度	処理時間	1分間	1分間	1分間	1分間	30分間	40分間	-	-

表一6 VOC 分解確認実験結果のまとめ

写真-3 サイトからの揚水の静置分離

表一つ	7 宝驗油	水初期分	析結果
1 1	一天四天四日		

鉄含有量	190 mg/ L
n-Hex 抽出物質含有量	5, 500 mg/ L
TPH 濃度 (C 6 ~C44)	1,000 mg/ L
ガソリンの炭素範囲 C6-12	52 mg/ L
ガソリンの炭素範囲 C6-12 軽油の炭素範囲 C12-28	52 mg/ L 510 mg/ L

d. VOC 分解確認実験のまとめ

VOC の分解確認実験の結果を表-6にまとめる。実 験により、ベンゼン・エチレン系は高速分解が可能であ ることを確認した。また、エタン系は、分解可能である が、30分以上の処理時間がかかることを確認した。

なお、本稿では詳細を記載しないが、メタン系および 四塩化炭素は、分解確認実験により、鉄触媒添加の有無 および pH に関わらず濃度の低減は見られず、オゾンマ イクロバブルによる分解はできないことを確認した。

5.3 油の分解確認実験

a. 実験の概要

実験油水には、機械油・燃料油等が地下に浸透して油 汚染が生じているサイトからの揚水を、24 時間静置分 離を行い、浮上油を回収した残液を使用した(写真-3 参照)。

実験油水の初期分析結果を表-7に示す。実験油水に は、鉄が190mg/L含まれていたので、実験において新 たに鉄は添加せず、pHを3.0(酸性)に調整した。オゾ ン供給量は使用発生器の最大値10g/hrとした。

本実験では、分解効果の確認方法として、油分濃度 (n-Hex 抽出物質含有量、TPH 濃度)および、油臭・油 膜の官能実験を実施した。

b. 分解完了の目標値

油分濃度の分解完了目標値は、n-Hex 抽出物質含有量 5.0mg/L 以下(水質汚濁に係る環境基準)とした。また、 油臭・油膜の分解完了目標値は、油汚染対策ガイドライ

図-8 油分濃度測定結果

表-8 油膜測定結果5)

	分解前	15分後	30分後	45分後	60分後	75分後
油膜が確認されない				0	0	0
小さなスポット状の油膜が確認される						
水面に銀色 and/or 虹色のすじ状油膜が確認される			0			
水面に銀色 and/or 虹色の油膜が広がる						
水面全体に銀色 and/or 虹色の油膜が広がる	0	0				

表一9 油臭測定結果

	分解前	15分後	30分後	45分後	60分後	75分後
無臭					0	0
やっと感知できる臭い				0		
何の臭いであるかがわかる弱い臭い		0	0			
楽に感知できる臭い						
強い臭い	0					
強烈な臭い						

ン⁵⁾に示される生活環境保全上支障が生じないレベル として、油膜実験は「小さなスポット状の油膜が確認さ れる」、油臭実験は「やっと感知できる臭い」とした。 c.実験結果

分解時間ごとの油分濃度(n-Hex 抽出物質含有量)の 分析結果を図-8に、油膜測定結果を表-8に、油臭測 定結果を表-9に示す。

油分濃度は初期値 n-Hex5,500mg/L に対し、分解時間 30 分には 24mg/L、45 分には 8.0mg/L となり、分解時間 60 分には目標値 5.0mg/L を満足した。

油膜・油臭実験では、分解時間 45 分にはそれぞれの 目標レベルを満足し、分解時間 60 分には「油膜が確認 されない」、「無臭」の状態となった。

6. C重油スラッジ洗浄水処理への適用

某工場内の C 重油タンクの底部に堆積したスラッジ の洗浄工事において発生した洗浄水を、オゾンマイクロ バブルを用いて分解処理した。処理には、連続式処理装 置を使用した。連続式処理装置は、オゾン反応槽滞留時 間が 10 分の場合、処理能力は約 8.6m³/day (6.0L/min× 24hr) である。装置全景を**写真-4**に示す。

対象水は、浮上油分離後の油水(写真-5参照)で、n-Hex 抽出物質含有量が 140mg/L、COD は 120mg/L で あった。事前にオゾン供給量や鉄添加量の確認実験を実施した結果から、表-10 に示す運転条件 (オゾン供給量 10g/hr、鉄添加量 20mg/L)を設定し、約 6.5m³の洗浄水を処理した。処理後の水(写真-5参照)は、n-Hex 抽出物質含有量は 5.0mg/L 未満、COD は 11.0mg/L となり、排水基準 (n-Hex 抽出物質含有量 5.0mg/L、COD 120mg/L)を満足した。

写真-4 連続式処理装置

写真-5 浮上油分離後の油水と処理後の水

	我 10 连拉木门 07 股上						
	原水流量	オゾン供給量	鉄添加量	分析結果	(mg/L)		
	(L/min)	(g//hr)	(mg/L)	n - Hex	COD		
原水	-	I	I	140	120		
1	6.7	10.0	30	6.0	19.0		
2	6.7	7.5	30	6.0	19.0		
3	6.7	10.0	15	11.0	25.0		
4	6.7	10.0	20	<5.0	11.0		
	排7	5.0以下	120 以下				

表-10 運転条件の設定

7.まとめ

オゾンマイクロバブルによる VOC・油の高速分解に ついて、開発の成果を以下に示す。

 i.以下の物質について酸化分解処理が可能である 油類:重油、軽油、灯油、ガソリン、冷却油、 潤滑油等

VOC:ベンゼン、エチレン系、エタン系

- ii. pH 調整と、鉄添加の後、オゾンをマイクロバブ ル発生器(ラインミキサー)により混合し、循環 処理しながらオゾンを連続的に供給することによ り、数分~数十分での高速分解が可能である
- iii. オゾンによる酸化分解では、分解生成物は発生せず、汚泥等の産業廃棄物もほとんど発生しない

なお、ベンゼン・エチレン等の VOC 分解実験に基づ くコスト積算では、活性炭吸着処理と比較して lm³ 当 たりの処理費用を 50%以上低減でき、C 重油スラッジ 洗浄水 (n-Hex 抽出物質含有量 140mg/L)の浄化実績で は、産業廃棄物処分と比較して lm³ 当たりの処理費用 を 75%程度低減できる試算となった。

8. あとがき

本開発は、土壌汚染対策や地下水浄化措置の排水処理 を短期間、低コストで処理することを目標に株式会社 日本海水、株式会社ナゴヤ大島機械と共同で実施した。

本技術は、土壌汚染対策や地下水排水処理のみでなく、 冷却水・油タンクのスラッジ洗浄水の処理や、各種工場 の廃油処理などに適用できる。さらに、当社保有技術で ある3菌株(油分解)を用いたバイオレメディエーショ ンのうち、地下水循環方式の循環水処理に適用すること で、揚水の油分を浄化すると同時に、循環水中の溶存酸 素濃度を高めることができるため、3菌株をより活性化 することができ、浄化期間を短縮することが可能である と考えている。今後、さらなる適用範囲の拡大に努めた い。

【参考文献】

- 1) 環境省、「水質汚濁防止法」、2012.6
- 2) 環境省、「土壤汚染対策法」、2010.4
- 3)環境省 水・大気環境局、「平成 23 年度 地下水質 測定結果」、2012.12
- 4) 山竹 厚、「水中マイクロプラズマの安定生成とラジ カル反応に関する研究」、pp.6、2007.2
- 5) 環境省 水・大気環境局土壌環境課、「油汚染対策ガ イドラインー鉱油類を含む土壌に起因する油臭・油 膜問題への土地所有者等による対応の考え方ー」、 pp.9,117-120、2006.3

震災により生じたコンクリートがれきの 再生コンクリートとしての再利用に関する検討 A Study on the Reuse of Concrete Debris Produced During

an Earthquake as Recycled Concrete

森本克秀* 三澤孝史** 廣中哲也**

要 旨

東日本大震災から3年以上が経過し、岩手県や宮城県では復旧から復興へと移行しており、災害 廃棄物の再利用が試みられている。一方、福島県では震災に伴う原発事故の影響のため復興が遅れ ている。復興に向けて災害廃棄物の処理を進めていく過程で、放射性物質に汚染されたコンクリー トの処分方法が課題になると思われる。このような背景を踏まえ、災害廃棄物であるコンクリート がれきを既開発の再生コンクリート(リ・バースコンクリート)により再利用することを検討した。 そこで本研究では、港湾構造物へ適用するために実証実験を行い、配合、施工性、品質等を確認し、 適用可能であることを実証した。さらに、放射性物質で汚染されたコンクリートがれきを再生コン クリートとして安全に管理しながら再利用できることを確認するために、特別除染地域においてコ ンクリートブロックを製作する実験を行った。これにより再生コンクリートの製造過程における放 射線量の変化を把握し、再生コンクリートにすることで放射線量が低減すること等を確認した。こ れらの実験で得た再生コンクリートの配合や放射線量に関する知見より、被災地におけるコンク リートがれきの有効利用の実現性を検証した。

キーワード:再生コンクリート、解体、スラグ、放射性物質、放射線量

1. まえがき

東日本大震災から3年以上が経過し、岩手県や宮城県 では復旧から復興へと移行しており処分された災害廃棄 物の再利用が試みられている。

その一つとして震災により発生したコンクリート災害 廃棄物(以下、コンクリートがれき、と記す)を、当社 が開発し、実績のある再生コンクリート(リ・バースコ ンクリート)の骨材として再利用することを検討してい る。今回、港湾構造物(港湾用ブロック)に、コンク リートがれきを用いた再生コンクリートの適用を検討し た。適用するに当たり、配合、施工性、出来形、および 品質(強度、密度)を確認する目的で港湾構造物(ケー ソン)を解体したコンクリートがれきを用いて実証実験 を行った。

今回の実証実験は、国土交通省東北地方整備局が震災 がれきを活用する民間技術を公募した「震災がれき等を 港湾建設資材として活用する技術」に採用され、実施し た。本報では、港湾構造物へ適用可能であることを検証 したので報告する。

一方、福島県では震災に伴う原発事故により除染作業

*東日本支社環境技術部 **技術研究所

が優先されているため、他県に比べ復興が遅れている。 今後、復興に向けて災害廃棄物の処理を進めていく過程 において、特別除染区域等では放射性物質に汚染された コンクリートが大量に発生する可能性があり、これらの 処分地の確保や処分方法が課題となっている。「放射性 物質汚染対処特別措置法」に基づく基本方針においては、 「安全性を確保しつつ、例えば、コンクリートくずを被 災地の復興のための資材として活用する等の廃棄物の再 生利用を図ることとする」とされており、特に災害廃棄 物の不燃物を念頭に、積極的に再生利用を図るべきこと が推奨されている¹⁾。この主旨に沿って、放射性物質 により汚染されたコンクリートがれきを再生コンクリー トの骨材として再利用することは、復興の進捗向上に寄 与すると考える。

放射性物質により汚染されたコンクリートがれきを安 全に管理しながら再利用するには、再生コンクリートを 製造する際の放射線量を把握しておく必要がある。そこ で、再生コンクリートの製造過程における放射線量の変 化を把握する目的で、特別除染区域である福島県双葉郡 葛尾村において、放射性物質に汚染したコンクリート製 品を原料とした再生コンクリートによりコンクリートブ ロックを製作する実験を行った。また、放射線量の測定 結果との比較により、数値解析による放射線量の推定値 の妥当性を検討した。

さらに、上記の2つの実験で得た再生コンクリートの 配合や放射線量に関する知見より、被災地におけるコン クリートがれきの有効利用の実現性を検証した。

2. リ・バースコンクリートの概要

2.1 リ・バースコンクリートとは

リ・バースコンクリート(Re-birth Concrete)は、解 体コンクリートが発生した現場で破砕機によって破砕後、 そのまま破砕物全量を骨材とし、水、セメント、および 混和剤と練り混ぜて製造する現場再生コンクリートであ る。

その特徴を活かし、東日本大震災で大量に発生した解 体コンクリートを遠隔地の処分場等で処分することなく、 復旧・復興現場で直接、再生コンクリートとして有効活 用することができる。また、天然骨材を使用したコンク リートの供給が不足している地域において、復旧・復興 に有効な対策となる。

本技術は、2001年に開発されて以来、設置・撤去が 簡易にできる専用製造装置を使用して、国土交通省を中 心に27件の工事で採用され、11,800m³の製造実績があ る。

2.2 製造方法

開発時およびその後の検証において、比較的大きな粒 径(直径 20cm 程度)の塊で解体コンクリートを保管し、 コンクリートの製造直前に1バッチごとに破砕すること で、破砕物の含水率と粒度分布の管理が容易になるとい う知見を得ている^{2),3)}。

この知見を踏まえ、リ・バースコンクリートの製造方 法として、図-1に示す製造フローを採用した。以下に、 その製造フローを説明する。なお、この過程では天然骨 材を新たに使用していない⁴⁾。

図ー1 製造フロー

①油圧ブレーカー等で 20~30cm に 1 次破砕した解体 コンクリートを専用製造装置へ投入

②専用装置内のクラッシャーで40mm以下に破砕 ③破砕物内の鉄筋を磁選機で取り除きながら、ベルト コンベアで搬送

④計量ホッパーで1バッチごとに破砕物を計量

⑤同時に、セメント、水、混和剤も計量し、ミキサー に投入

⑥ミキサーで練り混ぜ

⑦運搬車両に排出して打設場所(⑧)まで運搬

3. リ・バースコンクリートの港湾構造物への適用に関 する実証実験

3.1 実験概要

a.目的

リ・バースコンクリートが港湾構造物(港湾用ブロッ ク) へ適用できることを確認するために、港湾構造物 (ケーソン)を解体したコンクリートがれきと副産物細 骨材を併用したリ・バースコンクリートによる、港湾構 造物の製造実験を行った。本実験での港湾用ブロックに 用いられるコンクリートの要求性能は、スランプ 8± 2.5cm、空気量 4.5±1.5%、密度 2.3g/cm³ 以上、および 圧縮強度 18N/mm² 以上である。しかし、通常の製造方 法では骨材に JIS 規格のコンクリート用骨材(密度 2.5g/cm³ 以上)の替わりに、コンクリートがれき(密度 2.3g/cm³ 程度)を使用するため、リ・バースコンクリー トの密度は、2.1 g/cm³程度と小さくなる。

そこで、コンクリートの密度 2.3 g/cm³ 以上を確保す るため、密度が大きい JIS 規格のフェロニッケルスラグ 細骨材、または銅スラグ細骨材をコンクリートがれきと 併用することとした。

なお、本実験は、平成 25 年 4 月に国土交通省東北地 方整備局が震災がれきを活用する民間技術を公募した 「震災がれき等を港湾建設資材として活用する技術」に 採用され、実施したものである。

b. 実験方法

青森県八戸市河原木2号埠頭(八戸港内)において、 専用製造装置を用いて解体コンクリートの破砕物と密度 の大きい副産物細骨材(フェロニッケルスラグ細骨材、 銅スラグ細骨材)を併用したリ・バースコンクリートを 製造し、2t型港湾用ブロックを製作した。要求性能を 満足するために、解体コンクリート破砕物に対する副産 物細骨材の置換率、単位水量、および高性能 AE 減水剤 の添加率を変化させて配合を選定し、実機製造したリ・ バースコンクリートの品質(密度、強度など)、施工性、 および港湾用ブロックの出来形を確認した。

c. 実験における製造手順

実験におけるリ・バースコンクリートの製造手順を以

写真-1 材料投入状況

下に述べる。

- i. バックホーで所定量の副産物スラグ細骨材を計 量槽に投入したあと、解体コンクリートを製 造装置の破砕機部に投入(**写真-1参照**)
- ii. 自動計量された水、混和剤をミキサーに投入すると同時に、袋セメントを投入
- 前定時間の練り混ぜの後、製造装置下に待機するペイローダに排出後、小運搬して打設(写真-2参照)
- d. 使用材料および配合

リ・バースコンクリートに使用した材料の諸元を表 -1に示す。コンクリートがれきは、津波で被災した 港湾内のケーソンを解体したコンクリートであり、こ れを専用製造装置で 40mm 以下に破砕して骨材とし た。

目標密度 2.3 g/cm³以上を確保するため、東北地方 で入手しやすく密度が大きいフェロニッケルスラグ細 骨材と銅スラグ細骨材を採用した。

表-2にリ・バースコンクリートの配合を示す。コ ンクリート破砕物の一部を副産物細骨材(フェロニッ ケルスラグ細骨材、銅スラグ細骨材)で置き換えるこ とで、リ・バースコンクリートの密度が 2.3g/cm³とな るように基本配合を設計した。この基本配合をもとに、 現場で実機を用いた試験練りを行い、目標スランプと なるように、単位水量、および高性能 AE 減水剤の添 加率を変化させて調整し、最終配合を決定した。

3.2 実験結果

a.使用したコンクリートがれきの物性

解体コンクリートから2組8本のコアを採取し、圧 縮強度と密度を測定した結果を**表-3**に示す。

試料 1 の圧縮強度は 45.9N/mm²、密度は 2.37g/cm³、 試料 2 は 26.3N/mm²と 2.45g/cm³であった。今回のコ ンクリートがれきはケーソンを解体したものであり、 港湾施設の仕様より、比較的強度の高い試料 1 はケー ソン本体のコンクリート、外見より粗骨材寸法が大き

写真一2 打設状況

表-1 使用材料の諸元

解体 ケーソン解体物 30cm 程度に小割 コンクリート 普通ポルトラン 密度:3.16g/cm ³ マェロニッケル はロコエニム 成分 SiO ₂ MgO, 密度:	名称	産地・名称	諸元	
コンクリート ゲーングパード(***) Social 程度(***) セメント 普通ポルトラン ドセメント 密度: 3.16g/cm ³ フェロニッケル はロニュート 成分 SiO ₂ MgO, 密度:	解体	ケーソン解体物	20 mm 程度に小割	
セメント 普通ボルトラン ドセメント 密度:3.16g/cm ³ フェロニッケル 成分 SiO ₂ MgO, 密度:	コンクリート	クーノン州中国中の	500m 柱皮に小割	
セメント 密度:3.16g/cm ² フェロニッケル 成分 SiO ₂ MgO, 密度:	1. 1. 1. 1. 1	普通ポルトラン		
フェロニッケル 成分 SiO ₂ ,MgO,密度:	セメント	ドセメント	密度:3.16g/cm3	
王本旧から王	フェロニッケル	主 木目 // 古士	成分 SiO ₂ ,MgO,密度:	
スラグ細骨材 ^{青森県八戸市} 2.94 g/cm ³ ,粗粒率: 2.68	スラグ細骨材	百箖県八尸巾	2.94 g/cm³,粗粒率:2.68	
御スラズ御母社 短息周いわき末 成分 FeO,SiO ₂ 密度:	名といえる自生	毎自用いわき古	成分 FeO,SiO _{2,} 密度:	
鋼スワク細官材 福島県いわさ市 3.50 g/cm ³ ,粗粒率: 3.21	動ヘフク和自材	価局県 いわさ Ⅲ	3.50 g/cm ³ ,粗粒率: 3.21	
高性能AE ポリカルボン酸 変度104、106(3	高性能AE	ポリカルボン酸	空库104-10C/3	
減水剤 エーテル系化合物 盔皮 1.04~1.06g/cm	減水剤	I-FN系化合物	密度 1.04~1.06g/cm	

表一2 配 合

フラカ゛	オレヤシン			単位量	t(kg/m ³)	
和類 Sg	》 下比 W/C	水 W	セメント C	破砕 物 RC	スラク゛ Sg	高性能 AE剤 Sp	AE剤
フェロニッケ 1/スラグ	51.6	155	300	756	1118	1.20	0
銅河	50.0	150	300	1167	714	0.4%	0

表-3 採取したコアの強度と密度

No		1	2	3	4	平均
試	圧縮強度 N/mm ²	47.1	47.1	43.2	46.2	45.9
料 1	密度 g/cm ³	2.355	2.370	2.364	2.376	2.37
試	圧縮強度 N/mm ²	25.0	23.7	28.4	28.0	26.3
科 2	密度 g/cm ³	2.487	2.449	2.412	2.437	2.45

く、密度も大きい試料2は中詰コンクリートである。 b.フレッシュコンクリートの性状

ブロック製造時に練り混ぜ直後の試料を採取してスラ ンプ試験、および空気量試験を行った結果を表-4に示 す。この結果より、両配合とも所定の範囲(スランプ 8 ±2.5cm、空気量:4.5±1.5%)であることを確認した。

スラグ	スランプ	空気量	コンクリート	外気温		
種類	cm	%	温度℃	°C		
フェロニッケルスラク゛	8.0	5.5	8.0	5.0		
銅スラグ	7.5	5.1	9.0	7.0		
規定値	8.0±2.5	4.5±1.5		_		

リ・バースコンクリートは両配合とも空気量が平均よ りも多くなった。特に今回使用したフェロニッケルスラ グ細骨材は微粒分を含むタイプであったため、空気の連 行がやや多くなったと考えられる。

c.出来形

打設したブロックの脱型後に目視により出来形を確認 した結果、両配合ともジャンカやひび割れはなかった。 d.硬化コンクリートの性状

ブロック打設時に製作した供試体による圧縮強度の結 果を図-2に示す。圧縮強度については、フェロニッケ ル細骨材、および銅スラグ細骨材配合ともにほぼ同等で、 材齢 4 週で約 30N/mm² であり、所要の圧縮強度 (18N/mm²以上)を満足している。

コンクリートの密度については、銅スラグ細骨材配合 では 2.36g/cm³ であり、目標密度 2.3g/cm³ を満足したが、 フェロニッケルスラグ細骨材配合では 2.25g/cm³ となり、 目標密度より 0.05g/cm³ 小さかった。

3.3 まとめ

以上の実験結果より、下記の知見を得た。

- i. コンクリート破砕物と2種類のスラグ細骨材を原料として製造したリ・バースコンクリートはワーカビリティに優れており、打ち込み・締め固めは通常の方法で施工でき、2t型港湾用ブロックを製造できることを確認した
- ii. 圧縮強度は、フェロニッケルスラグ細骨材および 銅スラグ細骨材配合ともに材齢 4 週で 30N/mm² であり、所定の強度を有している

- iii. 銅スラグ細骨材を配合した密度は 2.36g/cm³ であり、目標密度 2.3g/cm³を満足した
- iv. フェロニッケルスラグ細骨材を配合した密度は、 2.25g/cm³と若干小さくなったため、今後、スラ グ細骨材の使用量、および空気量を調整して密度 を確保する

4.1 実験概要

a.目的

放射性物質で汚染されたコンクリートがれきを、リ・ バースコンクリートとして安全に管理しながら再利用で きることを確認するために本実験を行った。以下に主な 実験目的を示す。

- i. 放射性物質に汚染されたコンクリートがれきを用 いてリ・バースコンクリートを製造する過程にお ける放射線量の変化の把握
- ii. リ・バースコンクリートで製作したコンクリート ブロックの厚さと、ブロック表面の放射線量の関 係の把握
- ジ・バースコンクリートの放射線量の数値解析の 結果と測定結果を比較することにより、数値解析 結果の妥当性の確認

b.実験方法

リ・バースコンクリートの原料としたコンクリート製品は、葛尾村内に存置されていた放射性物質により汚染 された側溝蓋である。使用した側溝蓋を**写真-3**に示す。 側溝蓋の寸法は、縦 500×横 410×厚さ 95mm、重量は 約 45kg である。

側溝蓋表面の放射線量は、各面によって差があり、コ リメータを用いた NaI シンチレーションサーベイメータ による測定値は 0.10~0.27 μ Sv/h であった。同じく、コ リメータを用いた GM サーベイメータによる測定値は 約 900~2000cpm であった。放射性物質が付着している 表側が最も高い放射線量を示し、5 個のブロックの表側 の平均値は 0.23 μ Sv/h、1372cpm であった。

写真-3 側溝蓋

写真一4 小割状況

(側溝蓋をブレーカーで小割(写真-4参照)した後、 小型の破砕機(ジョークラッシャー)により 20mm 以下の破砕物とした。破砕物の放射線量を測定すると、放射線量は平均で 0.18 µ Sv/h、計数率は 160cpm であった。 c.配合

リ・バースコンクリートの配合は、実績のある、銅ス ラグ細骨材を混入したリ・バースコンクリートの配合 (表-2)を参考に設定した。基本配合および使用材料 を表-5に示す。混練にはパン型ミキサーを用いた。

d.試験ケース

写真-5に示すように、縦 0.3×横 0.3m で厚さを 0.1、 0.3、0.4m と変えた 3 種類のコンクリートブロックを製 作した。これらのブロックについて、4 週養生後、コン クリート表面の放射線量をコリメータを用い、NaI シン チレーションサーベイメータおよび GM サーベイメー タで測定した。

また、打設時に別に供試体(φ100×200mm)を作製 し、一軸圧縮強度試験、単位体積重量測定、および Cs-134、Cs-137の含有量を測定した。

4.2 実験結果

a.放射能濃度

リ・バースコンクリートの原料とした側溝蓋および リ・バースコンクリートの放射能濃度の測定結果を表-6に示す。

(側溝蓋については、破砕機(ジョークラッシャー)に より粒径 20mm 以下に粉砕したものを測定した。リ・ バースコンクリートについては、コンクリートブロック 打設時に、一軸圧縮強度試験体のモールド(φ100× 200mm)に打設して作製したものを、硬化後に粉砕し、 検体を採取して測定した。

表-6に示すように、放射能汚染されたコンクリート 破砕物に、銅スラグ、セメント、水を添加してリ・バー スコンクリートとすることにより、放射能濃度が約 40%低減している。

b. コンクリート厚さと放射線量の関係

厚さを変えて製作した3種類の供試体ブロックについ て、表面の放射線量を測定した。測定は、供試体表面の 複数個所とした(**写真-6**)。平均値を表-7に示す。

表-7より、コンクリート破砕物の放射線量は前述したように 0.18 µ Sv/h であるのに対し、破砕物を骨材として使用したリ・バースコンクリートのブロック試験体では、0.08 µ Sv/h と半分以下に放射線量が低減することがわかる。

また、コンクリートの厚さが 0.1~0.4m に変わっても コンクリート表面の放射線量は変わらず、計数率もほぼ 同じである。これは、リ・バースコンクリート自体が遮 蔽効果を持つため、放射性物質を内在するコンクリート が厚くなっても、それに比例しては放射線量が増加しな いと考えられる。

表 - 5	配合
-------	----

スラ			È	单位量(k	(m ³)	
グ 種類 Sg	水セメン ト比 W/C	水 W	セメント C	コンクリー ト塊 RC	銅スラグ 細骨材 Sg	高性能 AE減水 剤 Sp
Cu	50.0	150	300	1167	714	C×0.5%

写真-6 放射線量の測定状況

写真-5 ブッロク試験体

表一	表−6 放射能濃度 別定結果 (単位 : Bq/kg)					
側溝蓋 (破砕後)			リ・バー	ースコンク	ッリート	
Cs- 134	Cs- 137	合計	Cs- 134	Cs- 137	合計	
200	540	740	125	325	450	

表-7 コンクリートブロック表面の放射線量

	コンクリートブロックの厚さ (m)			
	0.1	0.3	0.4	
放射線量(μSv/h)	0.08	0.08	0.08	
計数率 (cpm)	99	109	104	

図ー3 解析モデル

4.3 数値シミュレーション

a.数値シミュレーションの概要

実験と比較するため、2-3の解析モデルを設定し、 解析コード: Micro Shield を使用したシミュレーション を行った。Micro Shield は、米国 Grove Software 社によ り開発された光子/ γ 線遮蔽および被ばく線量評価コー ドであり、遮蔽材の設計や放射線測定結果からの線源強 度の予測、人体への被ばくの最小化等の目的で、米国の 新規原子炉の許可申請書等、広く使用されている。

本シミュレーションでは、コンクリート中に放射性セ シウム 1000Bq/kg が一様に分布していると仮定して、測 定用ブロック表面から 0~2.0m 離れた位置における空 間線量を予測した。コンクリートブロックの厚さ B は 0.1、0.3m とし、リ・バースコンクリートの配合は、実 験に用いた供試体と同じく銅スラグ細骨材を添加したも のである。

b. シミュレーション結果

シミュレーション結果を図-4、5に示す。コンク リートブロックの厚さが3倍になっても、空間線量は僅 かに増加しているのみである。また、コンクリートブ ロックからの距離が大きくなるほど空間線量は低下し、 0.5m 以降では距離による空間線量の低下割合は小さく なる。このことから、ブロック周辺の空間線量はブロッ クの厚さにほとんど影響されず、距離減衰の影響が大き いことがわかる。

c.測定結果との比較

表-6に示したリ・バースコンクリート中の Cs-137 と Cs-134 の各々の放射能濃度と、図-4、5に示すシ ミュレーションより求めた単位放射能濃度当たりの空間 線量(コンクリートブロック表面からの距離:0.01m) より、リ・バースコンクリートの空間線量を推定した。 これを、表-7に示す測定値と比較した結果を表-8に 示す。

推定値では、コンクリートブロックの厚さが 0.1m で は 0.063 μ Sv/h、0.3m では 0.073 μ Sv/h であった。これ に対し、測定値では、コンクリートブロックの厚さが 0.1m および 0.3m とも、0.08 μ Sv/h であった。

解析による推定値は概ね、測定値と合致しているが、 実験場所の空間線量が 0.5 μ Sv/h 程度であったため、測 定にはコリメータを使用して他からの空間線量の影響を できるだけ排除したが、測定値が僅かに影響を受けて若 干大きくなったと思われる。

4.4 放射線量の予測

a.目的

4.3 節で述べたように、放射性物質により汚染された 解体コンクリートを原料としたリ・バースコンクリート の放射線量を推定できることを確認した。そこで、放射 性物質により汚染されたコンクリートがれきを原料とし たリ・バースコンクリートを、防潮堤のような長大な壁 構造物に適用した場合の放射線量を試算した。 b. 解析概要

図-6に示すように、防潮堤のような構造物を想定し て壁の高さが 3m、水平方向には無限大に延びる計算モ デルを設定した。壁厚さ B をパラメータとして 0.3、1、 2、5m と変えた。リ・バースコンクリートの配合は、

表-8 放射線量の数値解析と計測結果の比較

コンクリー トブロック	空間線量 (µSv ブロック表面か	/h)(コンクリート らの距離 0.01m)	
の厚さ (m)	測定値	解析結果からの 推定値	
0.1	0.08	0.063	
0.3	0.08	0.073	

今回の確認実験と同様に銅スラグ細骨材を添加した配合 である。リ・バースコンクリート中に、実験に用いた側 溝蓋の放射能濃度と同程度の1000Bq/kgの放射性セシウ ムが一様に分布していると仮定し、壁表面からの距離 0.01、1、2、5、10、20、100m 位置における空間線量を 計算した。

c. 解析結果

空間線量と壁表面からの距離の関係を図-7、8に示 す。同図より以下のことがわかる。

- i. 壁厚さが 0.3~5m では空間線量に大きな差は見 られず、壁が厚くなっても空間線量が壁厚さに比 例して増大することはない
- ii. 壁表面からの距離が 1m では、0.01m に比べ、Cs-137、Cs-134 とも約 60%に、距離が 2m では約 40%に空間線量が低減し、以降は緩やかに距離が 長くなるに従い漸減する

4.5 まとめ

- 今回の実験より得られた主な知見を以下に示す。
- i. 放射性物質により汚染されたコンクリートを、銅 スラグ、セメント、水を添加して、リ・バースコ ンクリートの骨材として再利用することにより、 原料としたコンクリート破砕物に比べ、放射能濃 度が約40%低減し、放射線量は50%以下になる
- ii. 放射線量の測定結果より、リ・バースコンクリートの厚さが 0.1~0.4m の範囲では、コンクリートが厚くなってもコンクリート表面の空間線量は変わらない
- ・ 解析コード: Micro Shield を用いた数値シミュ レーションで放射性物質により汚染された解体コ ンクリートを原料としたリ・バースコンクリート の空間線量をほぼ推定できる

上記より、放射性物質により汚染されたコンクリート がれきを骨材としてリ・バースコンクリートを製造する 場合、再利用時の空間線量が予測でき、安全に管理しな がら製造できると考える。

図-8 空間線量(Cs-134)と距離の関係

5. あとがき

副産物スラグ細骨材を添加したリ・バースコンクリー トの実証実験より、重量や強度などの品質面、並びに施 工性を確認し、港湾構造物に適用可能な再生コンクリー ト製造技術であることを確認した。

これらのことから、放射性物質に汚染されたコンク リートを用いた実験では、リ・バースコンクリートにす ることで放射線量が低減されること、コンクリート自身 が遮蔽体となるため、コンクリートが厚くなっても放射 線量の増大は小さいことを確認した。リ・バースコンク リート製造技術を用いることにより、放射線濃度が高い 場合を除いて、解体コンクリートを有用な材料として、 安全に管理しながら再利用できる見通しが得られた。

また、これまでのリ・バースコンクリートの実績から、 クラッシャー、ミキサー、サイロ等を組み合わせること で、150~250m³/日の製造が可能であり、JIS 仕様のコン クリートを使用する場合に較べ、20~30%程度のコスト 削減が可能である。

最後に、実験の場を提供して頂いた国土交通省東北地 方整備局港湾空港事務所殿、環境省福島再生事務所殿、 並びに実験材料入手にご協力頂いた葛尾村殿にお礼申し 上げます。

【参考文献】

- 環境省、「管理された状態での災害廃棄物(コンク リートくず等)の再生利用について」、平成23年12 月27日
- 2) 廣中哲也、東 邦和、松田敦夫、「解体コンクリート を全量使用した再生コンクリートの諸特性」コンク リート工学年次論文集、Vol.22、No2、2000
- 3) 廣中哲也、松田敦夫、森本克秀、「解体コンクリート を全量使用した現場再生コンクリート「リ・バースコ ンクリート」の開発と適用」、電力土木、2005.11
- 4) 森本克秀、「コンクリート塊を全量リサイクルする リ・バースコンクリートの現状について」、建設の施 工企画、2009.4

磁力選別による摸擬セシウム汚染土壌の乾式分級試験 Dry Classification Tests of Simulated Cesium-Contaminated Soil by Magnetic Sorting

白石祐彰*

要 旨

除染で生じる放射性セシウム汚染土壌に対して、土壌洗浄プラントを用いて砂を回収する湿式分 級には、廃水処理にたいへんな手間や費用が掛かる。そこで、セシウム汚染土壌に金属カルシウム、 酸化カルシウム、および鉄粉の粉砕混合物であるナノサイズの混合物を添加し混合することで、全 く廃水を出さずに高濃度のセシウム吸着土を優先的に磁着分離する乾式分級試験を実施した。

2mm アンダーの摸擬セシウム汚染土壌(マサ土)を対象に乾式分級試験を行った結果、粘土分は ほぼ全量磁着したが、シルト分はおよそ 70~80%磁着した。磁着しなかった試料のセシウム濃度は、 分級前の濃度に比べおよそ半減した。

キーワード:セシウム汚染土壌、磁力選別、乾式分級、磁性ナノカルシウム法、表面研掃

1. まえがき

東日本大震災に伴う福島第一原子力発電所の事故で放 出された放射性物質の除染作業が本格化してきた。対象 エリアはこれまでに例がない生活空間であり、範囲が広 大である。除染により生じた土壌は国が処理を担うが、 災害復旧工事・建設工事などからの発生土の処理は地方 公共団体などの事業者が負うこととなっている。した がって、福島県内では県・市町村などの事業者が道路な どの現場内に放射性物質を含む土壌の仮置きスペースを つくって保管している状況がみられる。そのため、維持 管理や跡地利用上の課題が指摘されるとともに、復旧工 事そのものの実施にも支障が生じる状況である。このよ うな状況下で、保管する土砂の量をできる限り減らすた めには土壌洗浄(湿式分級)などの減容化の方法が有効 である¹⁾。

セシウム汚染土壌に湿式分級法を適用すると、結果と してセシウムの吸着量が多い細粒分(シルト・粘土成 分)から構成される濃縮物と、セシウムの吸着量が少な い粗粒分(礫・砂成分)から構成される浄化土壌に分類 される。濃縮物は、土壌洗浄処理後に濁水として発生す る。濃縮物を脱水ケーキとして排出するためには、濁水 を凝集沈殿処理しなければならない。しかし、シルト以 下の細粒分だけの濁水については、ポリ塩化アルミニウ ム(PAC)と高分子ポリマーによる凝集沈殿処理が難し いため、無機系粉体凝集剤などの高価な薬品を使用しな ければ安定した凝集沈殿処理はできない。 そこで、本研究では、全く廃水を出さずに汚染土壌を 分級する方法として、磁性ナノカルシウム法を用いた磁 力選別を実施した。その結果、摸擬セシウム汚染土から セシウムが高濃度であるシルト・粘土成分を優先的に磁 着分離した。また、分級処理後の土壌の粒径から磁着性 能を評価したので報告する。

2. 磁性ナノカルシウム法

金属カルシウム、酸化カルシウム、および鉄粉を 2: 5:2 の混合比とし不活性ガス雰囲気下、遊星ボールミ ルを用いて 400rpm で1時間粉砕処理を行い、得られた 粉砕混合物であるナノサイズの混合物をナノカルシウム と呼んでいる。

セシウム汚染土壌とナノカルシウムを混合撹拌すると、 酸化カルシウムが常温常圧で土壌の間隙水や表面付着水 と反応して、全ての土粒子に対して一定の厚みの被膜を 形成すると同時に、鉄粉が土壌に付着し被膜に取り込ま れる(図-1)。金属カルシウムは、酸化カルシウムお よび鉄粉に親和性を有し、酸化カルシウムと鉄粉との結 び付きを高める。したがって、磁場における吸引力と土 粒子の自重との関係から、乾式処理で比較的重量の小さ い土壌微粒子のみを選択的に分離することが可能となる (図-2)。

磁性ナノカルシウム法による乾式分級の流れを図-3 に示す。

*技術研究所

3.1 撹拌機

パン型ドラムに遊星回転する多段混練羽根を複数軸備 えた撹拌ミキサーを用いて、セシウム汚染土壌とナノカ ルシウムを混合撹拌した。ドラム内部を図ー4に示す。 公転アームが多段混練羽根の全体を回転させて、自転 ロータがせん断混合の働きをする。そのほかの羽根に よって材料をドラム内で対流混合させる。

3.2 格子型マグネット

写真-1に示す2段式格子型マグネット(日本マグネ ティックス株式会社製)を磁力選別に使用した。マグ ネットの磁束密度は10,000ガウスである。

写真-1 2段式格子型マグネット

4. 摸擬セシウム汚染土壌の調製

マサ土を風乾し、マサ土 10kg に塩化セシウム水溶液 (100mg/500ml)を噴霧器により少量ずつ加えながら、 ポッドミキサーを3分間回転させた(写真-2)。 その 後、摸擬セシウム汚染土壌を風乾し(含水率=0.9%)、 目開き 2mm の篩でふるい、ふるい下の 2mm アンダー を試験に用いた。

写真-2 模擬セシウム汚染土壌の調製

5. 試験方法

撹拌機に摸擬汚染土壌 50kg とナノカルシウム 5kg を 投入した。ロータを低速(140rpm)で3分間、さらに アームを低速(13rpm)で3分間、両者を同時に運転し て撹拌した。撹拌後、試料 10kg を2段式格子型マグ ネットで磁力選別した(写真-3~5)。選別後、磁着 した試料、および磁着しなかった残渣試料の重量と、セ シウム濃度(ICP-MS分析)および粒度分布(ふるい分 析および沈降分析)を計測した。

砂分の土壌粒子の表面に吸着しているセシウムに対し ては、土壌粒子表面全体を削り取る(表面研掃)ことに よって削り取られた細粒分にセシウムを移行させること を目的に、ナノカルシウム投入前に摸擬汚染土壌をアー ムで高速(20rpm)10分間運転した後、試験を行った。 また、自転ロータのせん断混合による表面研掃を目的に、 ナノカルシウム投入前に摸擬汚染土壌をロータで低速5 分間、アームで低速5分間、さらに両者を同時に運転し た後、試験を行った。試験ケースを表-1に示す。

また、撹拌機の違いによる磁着分離性能を評価するため、**写真-2**のポッドミキサーに摸擬汚染土壌 50kg と ナノカルシウム 5kg を投入した。投入後、ポッドミキ サーを 10 分間回転させた試験ケース No.4 と 30 分間回 転させた試験ケース No.5 を設けた(**表-2**)。

写真-3 格子型マグネットによる磁力選別

写真-4 磁着した試料

写真-5 脱磁による分級

6. 結果および考察

6.1 磁着した試料、および磁着しなかった残渣試料の 重量

表-1 試験ケース(パン型ドラム)

	表面	研掃	ナノカル	撹拌			
No.	ロータ	アーム	シウム	ロータ	アーム		
1	なし	なし	5 kg	低速3分	低速3分		
2	なし	高速 10 分	5 kg	低速3分	低速3分		
3	低速5分	低速5分	5 kg	低速3分	低速3分		

表-2 試験ケース(ポッドミキサー)

No.	ナノカルシウム	回転時間
4	5 kg	10分
5	$5 \mathrm{kg}$	30分

試料 10kg に対し、磁着した試料および磁着しなかっ た残渣試料の重量を表-3に示す。磁着試料と残渣試料 の重量の合計は全てのケースで 9.9kg 以上となり、回収 率は99%以上であった。

パン型ドラムで摸擬汚染土壌とナノカルシウムを撹拌 した試験ケース No.1~No.3 では、磁着量と残渣量はお よそ 35:65 の割合であった。一方、ポッドミキサーで撹 拌した試験ケース No.4、No.5 では、およそ 24:76 の割 合となった。このことから、パン型ドラムとポッドミキ サーとの撹拌機の違いにより磁着性能が異なることがわ かった。セシウム汚染土壌とナノカルシウムは、ポッド ミキサーでは回転するミキサー内の数枚の羽根によって すくい上げられ、自重(重力)によって落下することで 混合された。一方、パン型ドラムでは、撹拌羽根で強制 的に動かされて混合された。そのため、ポッドミキサー は撹拌力がパン型ドラムより小さく、全ての土粒子に対 して一定の厚みの被膜をナノカルシウムによって形成す ることができなかったので、磁着量が少なかったと推察 した。

6.2 セシウム濃度

調製された摸擬セシウム汚染土壌のセシウム濃度は 7.7mg/kg で、目開き 2mm の篩でふるって、篩に残った 2mm オーバー土壌のセシウム濃度は 3.6mg/kg であった。

試験ケース No.1~No.3 の分級処理前後のセシウム濃 度を表-4に示す。分級前の試料のセシウム濃度は 10.5mg/kg 前後であったが、磁着した試料のセシウム濃 度は 17~20mg/kg となり、1.7~2 倍の濃度になってい た。磁着しなかった残渣試料のセシウム濃度は 5.3~ 5.9mg/kg となり、およそ半減していた。

6.3 粒径区分での比較

分級前の試料、および磁着試料と残渣試料の粒度分布 から試験ケース No.1~No.3 の試料を粘土 (<0.005mm)、 シルト (0.005mm~0.075mm)、砂および礫 (0.075 mm<)に区分し、試料 10kg に対しての区分ごとの重量 を求めた。粘土分を図-5に、シルト分を図-6に、砂 および礫分を図-7に示す。なお、粘土分には、ナノカ ルシウムが 910g 含まれている。

試料中の粘土分はほぼ全量磁着された。しかし、シル ト分は残渣試料に残っており、全量磁着することはでき なかった。また、砂分ではおよそ20%が磁着された。

シルト分では、分級前よりも分級後(磁着試料+残渣 試料)の方が重量が大きく、砂・礫分では分級前よりも 分級後の方が重量が小さかったことから、砂分が表面研 掃されたときに発生した微細粉体はシルト分に相当する と推察できる。表面研掃の効果は、試験ケース No.2 で 最も大きく現れた。これは、撹拌機の公転アームの回転 による多段混練羽根の働きによって砂分の土壌粒子の表 面研掃が促進されたためと考えられる。

No. (mg/kg) (mg/kg) (mg/kg) 1 9.9 17210.0 20 З 11.0 20

分級前

表-4 分級前後のセシウム濃度

磁着

残渣

5.9

5.6

5.3

磁性ナノカルシウム法を用いた磁力選別により 2mm アンダーの摸擬セシウム汚染土壌(マサ土)を対象に乾 式分級試験を行った結果、磁着した試料のセシウム濃度 は、分級前の濃度の 1.7~2 倍になり、磁着しなかった 試料のセシウム濃度は分級前の濃度に比べおよそ半減し た。

粘土分はほぼ全量磁着したが、シルト分ではおよそ 70~80%、砂分では 20%程度が磁着した。これらの結果 より、セシウムの平均濃度が低下した礫・砂分をより多 量に回収するためには、高汚染濃度であるシルト分の磁 着分離の性能向上が課題となった。

8. あとがき

本乾式分級では、土壌の混合資材としてはナノカルシ ウムのみであるが、その混合割合は土壌の 10%と小さ くはない。除染により取り除かれた放射性セシウム汚染 土壌の量を考慮すると、ナノカルシウムを廉価に製造す る必要がある。

なお、磁性ナノカルシウム法は、県立広島大学の三苫 準教授グループが提案された技術であり、三苫準教授か らナノカルシウムを提供していただき、本研究を実施し ている。また、撹拌機のドラム内部の図は、株式会社北 川鉄工所から借用した。

【参考文献】

- 1) 勝見 武、「東日本大震災による地盤環境課題への対応」、基礎工、Vol.42、No.3、pp.22-25、2014.3
- 2) 三苫好治、「ナノカルシウムによる放射性セシウムの 処理技術」、第 13 回インテレクチャル・カフェ広島 講演資料、2011.12
- 3) 白石祐彰、三苫好治、「ナノカルシウムによる摸擬セシウム汚染土壌の乾式分級試験」、環境放射能除染学会第2回研究発表会 講演資料、2013.6

省アンカーアウトフレーム耐震補強工法の拡充 -連結鋼管を用いた新設スラブと既存スラブの接合方法-

Development of an Anchor-saving Out-frame Seismic Retrofit Method - Method of Connecting Additional Slabs with Existing Slabs Using Steel Pipes -

岸本 剛* 河野政典* 服部晃三** 山口敏和**

要旨

建物の外部に新たにフレームを増設する耐震補強工法において、既存建物と増設フレームの一体 化に、あと施工アンカーと連結鋼管を併用する耐震補強工法「省アンカーアウトフレーム耐震補強 工法」を開発した。あと施工アンカーが負担する地震時せん断力の一部を連結鋼管に負担させるこ とで、あと施工アンカーの本数を減らすことができることを実験により確認した。本工法を耐震補 強工事に適用することにより、騒音、振動を発生させるアンカー工事期間を減らし、居住者の負担 を低減できるようになった。

キーワード: 耐震補強、連結鋼管、既存スラブ、あと施工アンカー

1. まえがき

耐震補強工事では、建物の継続使用の観点から、既存 建物を使用しながらの工事が可能な工法への要望が大き い。既存建物の外側に新たなフレーム(以下、補強架 構)を構築する耐震補強工法は、この要望を満たすと共 に、既存建物の内部空間の機能を損なわずに耐震補強で きる工法である^{1),2)}。このような耐震補強工法では、 既存建物の外周にバルコニー等のスラブ(以下、既存ス ラブ)がある場合、補強架構は既存スラブの外側に設置 され、補強架構と既存建物は既存スラブの下部に新設さ れたスラブ(以下、新設スラブ)により接合される。

補強架構に設計上必要な補強効果を発揮させるには、 既存建物と一体となって挙動し、地震力に抵抗できる機構とする必要がある。そのためには、既存建物に補強架構を剛に接合する必要があり、通常それには、あと施工 アンカー(以下、アンカー)が用いられ、補強架構の終 局耐力に応じ本数が決定される³⁾。

しかし、補強架構の終局耐力が大きいと必然的にアン カーの本数が多くなり、新設スラブ内に必要な本数が配 置できないことがある。加えて、アンカーの取り付け時 には騒音や振動が発生するため、本数が多いほど居住者 への負担が大きくなる。

これらの問題を解決するため、図-1に示すように、 既存スラブと新設スラブの接合部に地震時のせん断力の 伝達が可能な鋼管(以下、連結鋼管)を設置し、アン カーの本数を減らすことができる接合方法「省アンカー

*技術研究所 **西日本支社建築設計部

アウトフレーム耐震補強工法」(以下、本工法)を考案 した。

ー般に新設スラブは既存スラブより下に位置するた め、新設スラブのコンクリート(以下、新設コンク

リート)は既存スラブに設けた打設口より打設される。 本工法は、その打設口に連結鋼管を設置し、新設スラ ブと既存スラブを接合する工法である。一般的な工法 では補強架構と既存建物は、アンカーにより接合され るが、本工法ではアンカーと連結鋼管により接合され る。その結果、アンカーと連結鋼管の双方で地震時の せん断力を伝達することができるので、一般的な工法 と比較して、アンカーの本数を減らすことができ、騒 音・振動の大きいアンカー打設工事期間を短縮できる。

ここで、連結鋼管を耐震補強に用いるためには、耐力 評価方法を明らかにする必要がある。文献⁴⁾によると、 コンクリートの接合面に埋め込まれた鋼製シアキーのせ ん断力は、その周囲のコンクリートの支圧抵抗により伝 達されるとしている。しかし、支圧抵抗による耐力評価 方法は、50N/mm² 程度の高強度のコンクリートを対象 としたものであるので、一般に補強設計で対象とするよ うな 20N/mm² 以下の低強度のコンクリートへの適用性 については検討する必要がある。

そこで、低強度のコンクリートまで適用できる支圧耐 力式を導出するため、せん断実験を実施した。併せて、 連結鋼管とアンカーを用いた場合の新設スラブと既存ス ラブの接合部のせん断終局耐力を評価するため、接合部 実験を実施した。本報では工法概要と実験結果、および 耐力評価方法について報告する。

2. 連結鋼管のせん断実験

2.1 実験概要

表-1に試験体一覧を、表-2に鋼材の材料試験結果 を、図-2に試験体形状を示す。連結鋼管のせん断耐力 は、コンクリート強度や支圧面積の影響を受けることが 指摘されている⁴⁾。また、連結鋼管に地震時のせん断 力を伝達させるには、新設スラブと既存スラブ間の仕上 げ層や配置される連結鋼管数が耐力に与える影響を確認 しておく必要がある。実験では、連結鋼管径、新設スラ ブと既存スラブのコンクリート強度、新設スラブと既存 スラブ間の仕上げ層の有無、連結鋼管のへりあき寸法、 連結鋼管の数、形状をパラメータとした。

各試験体とも、連結鋼管の既存スラブと新設スラブへ の埋め込み長さは既往の研究⁴⁾を参考に、それぞれ 1D (D:鋼管径)とした。B-3 では仕上げ層として既存スラ ブと新設スラブとの間に、厚さ 10mm のスタイロ フォームを挿入した。既存スラブ内の連結鋼管の周囲お よび内部は、実施工と同様に新設スラブに使うコンク リート(新設コンクリート)を打設した。ただし、Bh-7 は連結鋼管周りの充填材によるせん断耐力への影響を確 認するため連結鋼管の周りをモルタルで充填した。また、 既存スラブと新設スラブの接合面には摩擦抵抗、および 固着抵抗を除去するためグリースを塗布した。加力は、

表一	1	試験体一	覧

					-				
		スラ	ブ厚	圧縮	強度		ſ	鋼管形状	ť
	試験体	既存 スラブ	新設 スラブ	既存 スラブ	新設 スラブ	仕上 げ層	鋼管数	鋼管 サイズ	へり あき 寸法
		mm	mm	N/mm^2	N/mm^2		-	mm	mm
B-1	基準試験体			19.8		400		φ	
B-2	既存Con強度小	150	200	16.0	33.7	ŧ	1	101.6	400
B-3	仕上げ層有(10mm)			19.8		有		× 5.7	
Bh-1	基準試験体			10.0			1	φ 19.6	250
Bh-2	へりあき小				31.9	無			150
Bh-3	鋼管2個(並列)			18.3			0	48.0 × 2.3	050
Bh-4	鋼管2個(直列)	75	100				2	~ 2.0	250
Bh-5	既存Con強度小			9.3	30.8			φ	
Bh-6	新設Con強度大			16.0	40 E		1	48.6	250
Bh-7	モルタル充填			16.0 49.5			× 2.3		
		表一	2 1	材料註	 験結	果			

=+ =+ /+	配	筋	路代改度 gu(N/mm ²)			
司马安14	既存スラブ	新設スラブ	降伏強度 Gy(N/mm ⁻)			
$P=1 \sim P=2$	上筋:D13@200	上筋:D13@200	D10. の282 D12. の245 網篇. の29			
B 1:-B 3	下筋:D10@200	下筋:D13@200	D10.0 y=302、D13.0 y=345、 美国 官: 0 y=36			
Bh−1∼Bh−4	上筋:D6@100	上筋:D6@100	D4 : σy=384、D6 : σy=357、鋼管 : σy=444			
Bh−5∼Bh−7	下筋:D4@100	下筋:D6@100	D4 : σy=384、D6 : σy=357、鋼管 : σy=356			

* Bh-7 のモルタル圧縮強度は 52N/mm²

油圧ジャッキによる一方向単調載荷とした。加力方向は 新設スラブ、既存スラブの接合面にせん断力が作用する ように図-2に示す矢印の方向とした。

2.2 実験結果

表-3に各試験体の最大荷重を示す。ここで、連結鋼管を2個配置した試験体については1個あたりの耐力としている。また、写真-1に試験体 B-1の最終破壊状況を、図-3に連結鋼管のせん断力と、新設スラブと既存スラブの相対水平変位の関係を示す。破壊形式は実験終了後の破壊状況から決定するものとした。

B-1~B-3 の破壊形式は、いずれも既存スラブ側、新 設スラブ側共にコンクリートの支圧破壊であった。既存 スラブのコンクリート(以下、既存コンクリート)の強 度の違いによる最大荷重への影響はみられなかった。そ れは、既存スラブ内の支圧破壊が、既存コンクリートで はなく主に連結鋼管周囲の新設コンクリートで生じたた めと考えられる。また、仕上げ層があると、無い場合に 比べ最大荷重が約10%低下した。

Bh-1~Bh-7 の破壊形式も既存スラブ側、新設スラブ 側共にコンクリートの支圧破壊であった。へりあき寸法 の違いによる影響はみられなかった。また、連結鋼管を 2 個配置した場合、1 個の場合より最大荷重が約 10%低 下した。また、Bh-1 と Bh-5 を比較すると、既存スラブ のコンクリート強度が小さい Bh-5 の方が最大荷重が低 い結果となった。連結鋼管の周りをモルタルで充填した 影響はみられなかった。

2.3 支圧耐力式の評価

支圧耐力の評価式として、文献⁴⁾ では式(1)を提案し ている。式(1)は、鋼製接合キーの支圧耐力における支 圧有効面積を鋼製接合キーの直径の 45°成分とした支 圧有効幅(B) と、鋼製接合キーの埋め込み長さ(L) の 1/3 とした支圧有効長さ(L_e)により求め、支圧強度 を部材幅(T)、支圧有効幅(B)、コンクリート圧縮強 度(F_e)の関数で与えている。

$$Q = B \cdot L_e \cdot 1.66 \cdot \left(\frac{T}{B}\right)^{0.63} \cdot F_c \tag{1}$$

B:支圧有効幅(mm)、 $L_e:$ 支圧有効長さ(mm)、T:コンクリート幅(mm)、 $F_c:$ コンクリート強度(N/mm²)

本工法では連結鋼管のせん断耐力を、式(1)を基に実 験結果より式(2)に修正した。記号は図-4による。

$$Q = k \cdot \alpha \cdot \beta \cdot B \cdot L_e \cdot 1.66 \cdot \left(\frac{T}{B}\right)^{0.63} \cdot \kappa \cdot F_{c2}^{0.5}$$
(2)

$$\alpha = \min\left(1, \frac{B_{\circ} \cdot F_{c1}^{\ b}}{B \cdot F_{c2}^{\ b}}\right)$$
(3)

$$\beta = 1.0 - \eta \cdot (e_s/D) \tag{4}$$

=+ F4 /+	Q _{max}	δ_{max}					
試験14	kN	mm					
B-1	268	5.08					
B-2	281	5.08					
B-3	239	3.19					
Bh-1	80	3. 77					
Bh-2	79	1.83					
Bh-3	72	2. 75					
Bh-4	71	2. 54					
Bh-5	56	2. 53					
Bh-6	79	2. 28					
Bh-7	75	2. 93					
まっては一般になっていた。							

k:安全率で 0.9、α:既存スラブ内の鋼管周囲の新設 コンクリートと既存コンクリートの強度差による影響 係数、β:仕上げ層の厚さによる低減係数、B:連結鋼 管の支圧有効幅(mm)、 B_o :打設口の支圧有効幅(mm)、 L_e :支圧有効長さ $(L_p/3) L_p$:鋼管埋め込み長さ(mm) でD (D:鋼管径)以上の場合はDとする、T:支圧に 影響を及ぼすコンクリートの幅(mm) ($T/B \leq 6$)、 F_c : コンクリート圧縮強度(N/mm²)で既存コンクリートを F_{cl} 、新設コンクリートを F_{c2} 、 κ :本実験により定め た定数 κ =3.6、 e_s :既存スラブと新設スラブの間隔 (mm)、η:コンクリートの圧縮強度ごとの係数で、 Fc13.5 の時 η=4.8、Fc21 の時 η=3.6、Fc30 の時 η=2.5、 Fc42 の時 η=1.7 とする (それ以外の場合は直線補完)。 ここで、既存スラブ内の連結鋼管の周りに打設され る新設コンクリートと、打設口より外側の既存コンク リートの強度差による影響係数 *a* は実験結果を元に式 (3)で評価した。式(3)は、新設コンクリートよりも既存 コンクリートの強度が十分小さい場合には支圧破壊位 置が連結鋼管周囲の新設コンクリートではなく、打設 口より外部の既存コンクリートであった実験結果から 導いた式である。

図-5に新設コンクリートの圧縮強度が約 30N/mm² の5体の試験体の既存コンクリート圧縮強度と実験時 の最大荷重の関係を示す。既存コンクリートの圧縮強 度が 16.0N/mm²以上では連結鋼管の断面が同じ場合、 最大荷重に大きな差はみられなかった。しかし、既存 コンクリートの圧縮強度が 9.3 N/mm²と低い Bh-5 では、 Bh-1、Bh-2 と比較して最大荷重は小さい結果となった。 これらの破壊状況を比べると、Bh-2 では主に打設口内 の新設コンクリートで支圧破壊していたのに対し、 Bh-5 では主に打設口外側の既存コンクリートで生じて いた。このことから、新設コンクリート強度に比べ既 存コンクリート強度が 20N/mm²程度小さい、つまり強 度差が大きいと、既存スラブ内のコンクリートの支圧 破壊位置は、連結鋼管周囲の新設コンクリートではな く、その外側の既存コンクリートとなると考えられる。

そこで、連結鋼管のせん断耐力を求める際の支圧有 効幅は、式(2)では連結鋼管の支圧有効幅(B)として いるが、コンクリートの強度差が大きい場合には、打 設口より外部の既存スラブのコンクリートが支圧破壊 する結果を考慮し、式(3)に示した支圧破壊位置による 影響係数 α により、せん断耐力を低減することとした。

図-6に、コンクリート強度と実験時最大荷重の関係を示す。文献⁴⁾ではコンクリート強度が約 50N/mm²の結果を基にコンクリートの支圧強度は F_c に比例するとしているが、コンクリート強度を 9.3~33.7 N/mm²とした今回の範囲では、 $\kappa \cdot F_c^{0.5}$ とした方が実験値を制度よく評価していた。そこで、コンクリートの支圧強度は $F_c^{0.5}$ に比例するとした。

式(2)による支圧耐力式による計算値と実験結果の比較を図-7に示す。実験値/計算値の平均値は 1.24 であった。

3. 接合部実験

3.1 実験概要

実験目的は、接合部のせん断耐力の評価をアンカーと 連結鋼管のせん断耐力の累加で評価できることを確認す ること、さらに、連結鋼管が設置される既存スラブのせ ん断耐力が接合部のせん断耐力に与える影響を把握する ことである。試験体一覧を表-4に、試験体形状を図-8に示す。試験体は既存梁と既存スラブから構成される

図-7 支圧耐力評価式と実験結果の比較

既存部、新設梁と新設スラブから構成される新設部、既 存部と新設部との接合部の3要素で構成される。接合部 にはアンカーや連結鋼管を設置した。

試験体は1/2縮尺モデルで、図-1に示した工法概要

図において新設梁が上方となるように設置した。試験体 数は5体で、実験では連結鋼管の数、および配置間隔、 既存スラブの仕様(コンクリート強度、配筋、下端筋の 既存梁への定着条件)、および新設スラブ幅をパラメー タとした。連結鋼管、およびアンカーの負担せん断耐力 が同等となるようにそれぞれを配置した試験体がA-2で (せん断耐力式は表-5参照)、これを基準試験体とし た。これに対し、A-1は連結鋼管が無くアンカーのせん 断耐力を確認する試験体、A-3は既存スラブでの破壊を 想定し既存スラブのせん断耐力を低下させた試験体、ま た、A-4では連結鋼管数を、A-5では新設スラブ幅、お よび連結鋼管の配置間隔を基準試験体とそれぞれ変えて いる。連結鋼管には φ 48.6x2.3を使用し、連結鋼管の既 存スラブと新設スラブへの埋め込み長さはそれぞれ1D (D:鋼管径)とし、連結鋼管と既存スラブの間にはモル タルを充填した。アンカーの既存梁への埋め込み長さは 13d。(da: 鉄筋径)、新設スラブへの定着長さは20daと した。また、既存スラブと新設スラブの接合面、および 新設スラブと下スタブ(既存梁)の接合面にはグリース を塗布し、摩擦抵抗および固着抵抗を除去した。

本実験は、押し引き型油圧ジャッキを用いて、新設梁 の中心軸に水平方向のせん断力を与えた。載荷は、補強 架構と既存建物の相対変形角R(図-9参照) が(0.625、 1.25、2.5、5、10、15、20、30、40)×10⁻³rad でそれぞれ 2サイクルの正負繰り返しを行った後、正加力方向へ単 調載荷とした。

3.2 実験結果

図-9に各試験体の荷重変形角関係を示す。A-2 では、 R=0.04×10⁻³rad 時に新設スラブと既存梁の接合面に沿う ひび割れが発生した。その後、アンカーの抜け出しに起 因する同接合面の浮き、連結鋼管の変形、およびその周 囲のコンクリートの損傷に起因する既存スラブと新設ス ラブとの間の開きが拡大し、R=10.2×10⁻³rad 時に最大荷

重に達した。以降、新設スラブ側面のひび割れが発生し て進展するとともに、水平接合部の界面の浮きならびに 両スラブ間の開きが顕著となり、荷重が徐々に低下した。 以上より、破壊形式は連結鋼管周囲の既存コンクリート の損傷、およびアンカーの抜け出しであった。A-4 と A-5はA-2と同様の破壊性状を示した。

これに対しA-3は、既存スラブの面外方向への倒れによ り、新設スラブとの間の開きがR=2.5×10⁻³rad 以降拡大し て剛性が徐々に低下し、R=5.2×10⁻³rad 時に最大荷重に達 した。以降、両スラブ間の開きが増大して連結鋼管の既 存スラブからの抜け出しが大きくなるとともに、水平接 合部の界面の浮きが進展し荷重が低下した。破壊モード は連結鋼管周囲のコンクリートの破壊、連結鋼管の既存 スラブからの抜け出し、アンカーの抜け出しであった。

3.3 接合部せん断耐力の評価

今回の実験では、連結鋼管数が多くなるほど最大荷 重は大きくなったことから、アンカーと連結鋼管のせん 断耐力を足し合わせできることが確認できた。また、既 存スラブのせん断耐力が大きいほど最大荷重は大きく なった。そこで、新設スラブと既存スラブの接合部せん 断耐力(Q_{cal})は、新設スラブから連結鋼管を介して既 存スラブに伝達されるせん断力と、新設スラブからアン カーによって既存梁に伝達されるせん断力の和として評 価した。接合部のせん断耐力式を式(5)に示す。

$$Q_{\text{ca}} = \min(Q_p, Q_s) + Q_a \tag{5}$$

ここで、Q,は連結鋼管の負担せん断力、Q。は既存ス ラブが伝達できるせん断力、O_aはアンカーの負担せん 断力である。試験体の実験値と計算値との比較を表-5 に示す。計算値に対する最大耐力実験値の比Qmax/Qcal は1.30~2.17 となり、提案するせん断終局耐力式により 実験結果を安全に評価していることを確認した。

新設スラブ t=140mm

試験体一覧 表-4

[・]モルタル圧縮強度:58.8 N/mm² (全試験体)

4. まとめ

実験により以下の知見を得て、連結鋼管とアンカーを 併用する本工法は、アンカー本数を減らすことができる 工法であることを確認した。

- i. せん断実験における連結鋼管の破壊モードはいず れもコンクリートの支圧破壊であり、支圧耐力は 文献⁴⁾を修正した耐力式により安全に評価でき る
- ii.既存建物と補強架構との間で伝達可能なせん断力 は連結鋼管の設置数が多いほど大きくなる
- iv. 接合部のせん断耐力は、連結鋼管と既存スラブの せん断耐力のいずれか小さな値と、アンカーのせ ん断耐力の累加で求めた耐力式により安全側に評 価できる

5. あとがき

今回開発した工法は、耐震補強工法として有効であることが確認できた。実物件で適用できるよう努めていきたい。

【参考文献】

- 日本建築防災協会、「既存鉄筋コンクリート造建築物の耐震改修指針・同解説」、2001
- 日本建築防災協会、「既存鉄筋コンクリート造建築物の耐震診断基準・同解説」、2001
- 日本建築防災協会、「既存鉄筋コンクリート建築物の外側耐震改修マニュアル」、2002
- 4)建設省土木研究所、「プレキャストブロック工法によるプレ ストレストコンクリート道路橋設計・施工指針(案)」、

表-5 実験値と計算値の比較

		A-1	A-2	A-3	A-4	A-5
Q_{exp}	kN	172	509	387	367	440
Q_{cal}	kN	132	238	178	207	202
Q_{exp}/Q_{cal}	-	1.30	2.14	2.17	1.77	2.17

- Q_{ep}:実験値で、アンカー位置での水平ずれ変形が1mm時の 耐力(1mmは文献³⁾での許容値2mmを試験体縮尺1/2を 踏まえ1/2とした値)
- Qcal:計算値で以下による
- $Q_{cal} = \min(Q_p, Q_s) + Q_a$
 - ここに、 *Q_p*:連結鋼管の負担せん断力 *Q_s*:既存スラブが伝達できるせん断力 *Q_a*:アンカーの負担せん断力
- $Q_p = \min(Q_{p1}, Q_{p2})$
- ここに、 Q_{p1}:支圧破壊による連結鋼管のせん断耐力で 式(2)による。なお、モルタルの圧縮強度を 用いて評価した。 Q_{p2}:連結鋼管の降伏によるせん断耐力
- $Q_{p2} = \sigma_{y} / \sqrt{3 \cdot A/2} + F_{c} / 10 \cdot A_{c}$
 - ここに、 σ_y:連結鋼管の降伏強度、A:連結鋼管の断面 積、F_c:連結鋼管に充填されるコンクリートの圧縮 強度、A_c:連結鋼管内部のコンクリートの断面積
- $Q_s = \tau_k \cdot L_c \cdot t_k$
 - ここに、t_k:既存スラブの短期許容せん断応力度、L_c:せん断力を負担する既存スラブ長さで文献¹⁾に倣い接合部の中央0.6Lの範囲とした、t_k:既存スラブのスラブ厚、L:接合部の長さ

 $Q_a = \phi_s \cdot n \cdot q_u$

ここに、ø_s: 文献¹⁾に倣い、せん断変形を許容値(2mm) 以下に制限するための低減係数で0.7、n:接合部 の中央0.6Lの範囲のアンカーの本数、q_u:アンカー 1本あたりのせん断耐力

F_c150N/mm² 級コンクリートを用いた柱部材の せん断性能に関する実験的研究

An Experimental Study on the Shear Performance of Reinforced Concrete Columns Using F_c150N/mm² Class Concrete

細矢 博* 河野政典* 舟山勇司**

要 旨

近年、鉄筋コンクリート(RC)造の超高層建物が多数建設されているが、さらに、超高層の建物 の建設を目指し、また同時に、柱断面の縮小とスパンの拡大を目指し、より高強度なコンクリート を用いた RC 柱の開発が行われている。しかしながら、既往の研究においては、RC 柱のせん断性状 については十分に検討されているとは言い難い。そこで、在来補強、鋼繊維補強、ならびに鋼板補 強された3種類のF_e150N/mm²級の RC 柱を対象として、静的加力実験を行い、構造性能の把握とせ ん断耐力の評価を試みた。

その結果、鋼繊維、ならびに鋼板で補強された RC 柱では、在来 RC 柱に比べて、せん断耐力が向上すること、提案した計算式で精度良くせん断耐力を評価できることを確認した。

キーワード:鉄筋コンクリート柱、Fc150N/mm²、せん断性能、鋼繊維補強、鋼板補強、加力実験

1. まえがき

近年、鉄筋コンクリート(RC)造の超高層建物の建 設が増加してきており、これらの建物の下層階の柱には、 F_c100N/mm^2 級のコンクリートが適用されている。この 状況下で、さらなる建物の高層化、柱断面の縮小、スパ ンの拡大を目指すため、より高強度の F_c150N/mm^2 級の コンクリートを用いた柱の研究が行われ¹⁾、さらにま た一部の建物では、 F_c200N/mm^2 級のコンクリートを用 いた柱も採用され始めている²⁾。しかしながら、既往 の研究においては、 F_c150N/mm^2 級の高強度コンクリー トを用いた柱のせん断性状に関して、十分に検討されて いるとは言い難い。そこで、在来 RC 柱、鋼繊維補強 RC 柱、鋼板補強 RC 柱の 3 種類の柱部材で静的加力実 験を行い、それら柱部材のせん断性能の把握、せん断耐 力の評価方法の検討を行った。

2. 実験概要

2.1 試験体

試験体の諸元を表-1に示す。また、試験体の形状・ 寸法、配筋の一例を図-1に示す。試験体は、超高層 RC 造建物の下層階の柱を想定し、それをせん断破壊型 に計画し直したものである。試験体は、在来 RC 柱のほ か、鋼繊維補強 RC 柱、鋼板補強 RC 柱の試験体で CS1

*技術研究所 **東日本支社建築設計部

~CS7 である。

CS2 は基準試験体で、横補強筋比 p_w を 0.5%に設定した在来 RC 試験体である。CS1 は比較試験体で、CS2 の 横補強筋比 p_w を 0.33%に減じた試験体である。CS3、 CS4 は CS2 を基準とし、その柱のコンクリートに鋼繊 維をそれぞれ 0.5vol%、1.0vol%混入した試験体である。 CS5、CS6 は CS2 を基準とし、その柱をそれぞれ 3.2mm、4.5mm 厚の鋼板で拘束した試験体である。CS7 は CS6 の軸力比 ($\eta = N/(BDmin(F_e, \sigma_B))$)を 0.25 から 0.5 に増大させたものである (N:軸力、 σ_B : コンク リート圧縮強度)。

全7体の試験体とも、コンクリートの設計基準強度 (F_e)は 150N/mm²である。柱断面の寸法は実物の約 1/3 とし、B×D=300×300mm である(B:柱幅、D:柱成)。 柱高さは H=720mm で、M/QD=1.2 である。柱主筋比は、 実建物の柱主筋比を想定し p_g =3.54%とした。横補強筋 比は、実建物の横補強筋比のレベルを考慮し、かつ、せ ん断破壊型になるように p_w =0.33%~0.5%とした。鋼種 は、柱主筋が USD685、横補強筋が SBPD1275 である。 鋼板は SS400 である。なお、試験体コンクリートへの 鋼繊維混入率は、施工性を考慮し、0.5vol%、1.0vol%の 2 水準に設定した。この際、鋼繊維には、コンクリート に混和しやすいスチールコードを用いた。一方、鋼板の 厚さは、施工性および試験体の縮小率(1/3)を考慮し、 3.2mm と 4.5mm の 2 水準に設定した。コンクリート、

-												
封驗休夕	補強	断面		主筋		†	黄補強筋		M/OD	軸力比	鋼繊維	鋼板厚さ
110天14-11	種類	(mm)	配筋	材種	p _g (%)	配筋	材種	p _w (%)	M/QD	η	(vol%)	(mm)
CS1	在来RC					4-RB6.2@120		0.33		0.25	-	-
CS2	在来RC					4-RB6.2@80		0.50		0.25	-	-
CS3	鋼繊維補強RC					4-RB6.2@80		0.50		0.25	0.5	-
CS4	鋼繊維補強RC	300×300	16-D16	USD685	3.54	4-RB6.2@80	SBPD1275	0.50	1.2	0.25	1.0	-
CS5	鋼板補強RC					4-RB6.2@80		0.50		0.25	-	3.2
CS6	鋼板補強RC					4-RB6.2@80		0.50		0.25	-	4.5
CS7	鋼板補強RC					4-RB6.2@80	1	0.50		0.50	-	4.5

表一1 RC 柱試験体の諸元

柱高さH=720mm、軸力比 η=N/(BD(min(F_e, σ_B))) N:軸力、B:柱幅、D:柱成、F_e:コンクリート設計基準強度(150N/mm²)、σ_B:コンクリート圧縮強度

表-2 コンクリートの材料試験値

計驗休	$\sigma_{\rm B}$	ε _{co}	Ec	σ _t	ρ	
时间大学	(N/mm^2)	$(\times 10^{-6})$	(kN/mm^2)	(N/mm^2)	(kN/m^3)	
CS1	171	3743	49.6	5.50	25.24	
CS2	172	3855	48.9	6.50	25.21	
CS3	181	3985	50.4	-	25.40	
CS4	177	3881	51.1	-	25.64	
CS5	171	3712	49.4	7.92	25.46	
CS6	171	3846	49.6	6.94	25.46	
CS7	176	3863	49.2	7.12	25.40	
σ _B :圧縮強度 ε _{co} :圧縮強度時ひずみ度						
E _c :ヤング传	系数	σ _t :割裂強	度	ρ:単位容積重量		

表-3 鉄筋の材料試験値

鉄筋、ならびに鋼板の材料試験値を表-2、表-3、表 -4に示す。また、鋼繊維の物性を表-5に、鋼繊維の 外観を写真-1に示す。

2.2 加力方法

加力実験には、建築研究所方式の加力装置を用いた。 所定の一定軸力(軸力比η: 0.25(CS1~CS6), 0.5(CS7)) を加えた後、反曲点位置に変位制御により水平力を加え て逆対称曲げモーメントを作用させた。加力スケジュー ルは、部材角(R)で、R=±1/800rad を1 サイクル、R=± 1/400、1/200、1/100、1/67、1/50、1/33rad を各 2 サイク ルずつ漸増繰り返し加力を行った。また、R=±1/33rad を経ても耐力が顕著に低下しない試験体については R=+1/25rad、もしくは R=+1/20rad まで一方向単調加力 を行った。

3. 実験結果

3.1 破壊状況

在来 RC 柱の CS1、CS2、ならびに鋼繊維補強 RC 柱 のCS3、CS4の最終破壊状況を写真-2に示す。また、 鋼板補強 RC 柱の CS5~CS7 について、実験後に鋼板を 除去した後の最終破壊状況を写真-3に示す。在来 RC 柱の CS1、CS2 では、R=1/200rad 以降、せん断ひび割れ が進展、拡幅し、R=1/67rad 以降では、かぶりコンク リートが大きく剥落した。一方、鋼繊維補強 RC 柱の CS3、CS4 では、せん断ひび割れが進展、拡幅した R=

表-5 鋼繊維の物性

物 直径:0.16mm、長さ:13.0mm

庙田邨位	11171天夕	编新	σ _y	σu	Ec	ε _y	ε _u		
区用即位	140.41	到四1里	(N/mm^2)	(N/mm^2)	$(\times 10^{5} \text{N/mm}^{2})$	$(\times 10^{-6})$	(%)		物性
柱主筋	D16	USD685	741	936	1.928	5844	13.3	Anna e sta e se	直径:0.16mm、击
横補強筋	RB6.2	SBPD1275	1375	1412	1.852	9427	11.5	鋼繊維	密度:7.85g/cm。
		그 나카로 가신 글			7 **/				引張強さ:2830N
σ _y :降伏点		σ ": 5] 張强度	ŧ	E _c :ヤンクゼ	糸薮				

ε..:破断伸び

ε_v:降伏ひずみ度(0.2%オフセット値)

表-4 鋼板の材料試験値

使用部位	鋼板厚さ	鋼種	σ _y	σu	E_{c}	ε _y	ε _u
			(N/mm^2)	(N/mm^2)	$(\times 10^5 N/mm^2)$	$(\times 10^{-6})$	(%)
鋼板	t=3.2	SS400	310	411	1.805	3790	32.2
鋼板	t=4.5	SS400	322	428	1.848	3742	34.6
σ _v :降伏点		σ_1:引張強度	ŧ	E _c :ヤング信	系数		

ε_ν:降伏ひずみ度(0.2%オフセット値)

写真-1 鋼繊維

εu:破断伸び

1/67rad 以降でもかぶりコンクリートの剥落はみられな かった。鋼繊維補強 RC 柱の破壊程度は、鋼繊維の補強 効果によって、在来 RC 柱に比べて著しく改善された。

次に、鋼繊維補強 RC 柱の CS3 と CS4 を比較すると、 鋼繊維混入率 0.5vol%の CS3 では、R=1/50rad 以降、対 角線に沿った 2 本のせん断ひび割れが著しく拡幅したの に対し、1.0vol%の CS4 では、R=1/33rad 時でも、CS3 で観察された対角線状のせん断ひび割れのようには拡大 しなかった。このことから、鋼繊維混入率が 0.5vol%異 なるだけで最終破壊の様相は異なることがわかった。

次に、鋼板補強 RC 柱の CS5~CS7 について、鋼板を 除去した後の破壊状況をみると、かぶりコンクリートの 剥落は在来 RC 柱 CS1、CS2 に比べてほとんど認められ ない。また、ひび割れ幅も狭く、鋼繊維補強 RC 柱 CS3、 CS4 に比べて、対角線状のせん断ひび割れは著しくない。

CS5~CS7 を比較すると、厚さ 3.2mm の鋼板で補強 した CS5 よりも厚さ 4.5mm の鋼板で補強した CS6 では 柱脚部におけるコンクリートの圧壊、および柱主筋の座 屈が著しく、鋼板が厚い試験体の破壊が激しい結果と なった。これは、CS6 は CS5 に比べ、最大せん断耐力 が高くなり、それに応じて材端部の曲げモーメントが大 きくなったため、損傷が激しくなったものと考えられる。

CS7 は、経験した部材角が R=1/67rad 程度であったため、コンクリートの圧壊、柱主筋の座屈は、CS5 や CS6 とほぼ同等であり、材端部の損傷はあまり激しいものではなかった。しかし、受けた軸力は、軸力比(η)にして

0.5 と高いレベルであったため、加力 途中で軸力を保持できなくなった。

CS5~CS7 の加力面内方向のせん断 ひび割れの状況を比較すると、ひび 割れ幅、ひび割れ本数に有意な差は みられなかった。

3.2 残留ひび割れ幅

加力実験時にひび割れ観察が可能 であった CS1~CS4 の試験体につい て、除荷時の残留ひび割れ幅と部材 角との関係を図-2に示す。

鋼繊維補強 RC 柱 CS3、CS4 の残留ひび割れ幅は、大変 形域まで、在来 RC 柱 CS1、CS2 に比べて明らかに小さ く、R=1/67rad まで 0.2mm 程度で、微細であった。大地 震時に柱に生じる部材角は R=1/100rad 程度以下である ことを考えると、鋼繊維補強 RC 柱は在来 RC 柱に比べ て、地震後の補修の必要性が少ないことが確認できる。

3.3 柱せん断カー部材角曲線

CS1~CS7 の柱せん断力(Q) -部材角(R)曲線を図-3 に示す。CS1 では、R=1/200rad の第 1 サイクルでせん 断破壊し、耐力が低下した。その後、R=1/67rad の第 1 サイクルで加力を打ち切った。CS2 では、R=1/100rad の第 1 サイクル途中でせん断破壊し、耐力が低下したが、 R=1/33rad のサイクルまで加力した。この部材角の第 2 サイクルの負側で横補強筋が破断したため急激に耐力が 低下した。CS3 では、R=1/67rad の第 1 サイクルでせん 断破壊し、耐力が低下した。R=1/33rad のサイクルまで 加力したが、R=1/33rad の第 1 サイクルピーク直前で横 補強筋が破断したため急激に耐力が低下した。このため、 加力を打ち切った。CS4 では、R=1/50rad の第 1 サイク ルでせん断破壊し、耐力が低下した。R=1/33rad のサイ クルを経た後、R=1/20rad まで片押し加力した。

CS3、CS4 は、せん断破壊にもかかわらず、鋼繊維の 補強効果により、耐力の低下が穏やかであることを確認 できる。基準試験体の在来 RC 柱 CS2 に比べ、比較試 験体の鋼繊維補強 RC 柱 CS3、CS4 では、鋼繊維の補強 効果で、せん断破壊が生じる部材角が大きくなることが わかる。また、CS2 に対してせん断耐力も増大すること が確認できる。

鋼板補強 RC 柱の CS5 では、R=1/67rad で最大耐力を 記録し、その後、徐々に耐力が低下した。R=1/33rad に

おいても耐力が保持されていたため、R=1/20rad まで片 押し加力した。破壊モードはせん断破壊型と判定された ものの、鋼板で補強されていたため、設計で要求される 以上の十分な変形性能を示した。CS6 では、R=1/67rad

> で最大耐力を記録した。R=1/33rad におい ても耐力が保持されていたが、R=1/20rad のピークに向かう途中で急激に耐力が低下 したため R=1/25rad で片押し加力を打ち 切った。CS7 は、η=0.5 の高軸力を受けて いるので、同じ厚さの 4.5mm の鋼板で補 強されている CS6 と比べて、R=1/100rad の 早期にかつ高い最大耐力を記録した。しか し、負方向では、最大耐力が正方向の80% 程度であり、耐力低下傾向が顕著であった。 その後、R=1/67rad の 1 サイクル目の正方 向では耐力が出たが、負方向では正方向の 80%程度しか表れず、やはり耐力低下傾向 が顕著であった。R=1/50rad のサイクルで は、ピークに至る前に軸力を保持できず、 急激に耐力は低下した。このため、 R=1/67rad 近傍で加力を打ち切った。

> 厚さ 4.5mm の鋼板で補強されていても、 軸力比(η)が 0.5 と高軸力下では、柱部材 の変形性能は、急激に低下することが確認 された。

3.4 柱せん断カー部材角曲線の包絡線

柱せん断力(Q)-部材角(R)曲線の包絡線 を図-4に示す。先ず、(1)の CS1~CS4 を比較すると、鋼繊維補強 RC 柱の CS3、 CS4 は、在来 RC 柱の CS1、CS2 に比べ、 そのせん断耐力、変形性能は格段に優れて おり、構造性能に及ぼす鋼繊維の補強効果 が確認できる。次に、在来 RC 柱の CS1 と CS2 を比較すると、横補強筋比 pw=0.5%の CS2 のせん断耐力、変形性能は、pw=0.33% の CS1 よりも優れている。横補強筋比の構

図-4 柱せん断力(Q)-部材角(R)曲線の包絡線

造性能に与える補強効果が確認できる。また、鋼繊維補 強 RC 柱の CS3 と CS4 を比較すると、鋼繊維混入量 1.0vol%の CS4 のせん断耐力、変形性能は 0.5vol%の CS3 よりも優れている。このことから、鋼繊維混入量が 構造性能に影響を及ぼすことが明確にわかる。

次に、図-4(2)の CS5~CS7 を比較すると、鋼板の 厚さが 3.2mm の CS5 と 4.5mm の CS6 では、最大耐力 は、CS6 の方が CS5 に比べて優れている。このことか ら、耐力に及ぼす鋼板の補強効果が確認できる。一方、 CS5 と CS6 の変形性能について比較すると、最大耐力 の発生時の部材角はほとんど同一であった。また、それ 以降の変形性能は、厚さ 4.5mm の CS6 の方が 3.2mm の CS5 に比べ劣っていた。よって、鋼板が厚いほど変形性 能に優れているとは一概に言えないことがわかった。こ れは、上述のように、CS6 は CS5 に比べ最大せん断耐 力が高いため、材端部の曲げモーメントが大きくなり、 その結果として、材端部の損傷が大きかったためである。

η=0.5 の高軸力を受ける CS7 は、η=0.25 の軸力を受ける CS6 に比べ、最大耐力が大きい。同時に、最大耐力発生時の部材角については、CS7 は CS6 に比べて小さく、その後の変形性能も劣っていることがわかる。

図-4(1)から初期剛性についてみると、在来 RC 柱 CS1、CS2 と鋼繊維補強 RC 柱 CS3、CS4 では、有意な 差はみられなかった。したがって、鋼繊維補強が剛性に 及ぼす影響は小さいと考えられる。また、図-4(2)か ら初期剛性についてみると、鋼板の厚さが異なる CS5 と CS6 では有意な差はみられなかった。したがって、 鋼板厚さが剛性に及ぼす影響は小さいと考えられる。こ れに対し、軸力が異なる CS7 と CS6 を比較すると、こ れらでは、剛性が異なり、軸力が剛性に影響を及ぼす結 果となっている。

なお、図-4(1)、(2)において〇でマークしたよう に、CS2ではR=1/80rad、CS4ではR=1/70rad、CS5では R=1/88rad、CS6ではR=1/64rad、CS7ではR=1/105rad で、それぞれ柱主筋が圧縮降伏した。しかし、各試験体 とも柱主筋は引張降伏しなかった。 F_c150N/mm^2 級の柱 部材では、柱主筋の圧縮降伏が、引張降伏に先行する結 果となった。

3.5 最大耐力の実験値と計算値の比較

最大耐力の実験値と計算値の比較を表-6に示す。また、 $Q_{max}/Q_{mu} - Q_{sv}/Q_{mu}$ 関係を図-5に示す。なお、図 -5には、本報告の実験値のほか、既往の研究³⁾で得られた曲げ破壊型試験体の実験値も併記している。表-6において、曲げ耐力は ACI 式⁴⁾により、せん断耐力 は日本建築学会の靭性保証型耐震設計指針式⁴⁾により 求めた。その際、鋼繊維補強 RC 柱のせん断耐力は、下 記の式(1)より、鋼繊維の影響を考慮した有効横補強筋 比を求め、それを用いて算出した。また、鋼板補強 RC 柱のせん断耐力は下記の式(2)より、同様に、鋼板の影 響を考慮した有効横補強筋比を求め、それを用いて算出 した。

(a) 鋼繊維補強 RC 柱の有効横補強筋比

$$p_{we} = \frac{a_w}{b_e s} + \kappa p_s \frac{\sigma_{sy}}{\sigma_{wy}} \tag{1}$$

 a_w :1 組の横補強筋の断面積、 b_e :トラス機構に関与 する断面の有効幅、s:横補強筋の間隔、 κ :鋼繊維の 配向による低減係数(ここでは、 $\kappa = 1/3$ と仮定する)、 p_s :鋼繊維の混入体積率、 σ_{sy} :鋼繊維の引張強度、 σ_{wy} :横補強筋の降伏強度

(b) 鋼板補強 RC 柱の有効横補強筋比

	実馴	険値		計算	筸値							
			曲げ耐力		せん断耐力]						
試験体	正方向	負方向	(補強効果考 慮せず)	(補強効果考 慮せず)	(鋼繊維補強 効果考慮)	(鋼板補強効 果考慮)		実験値	/計算値			
	Q _{max} (kN)	Q _{min} (kN)	Q _{mu} (kN)	$Q_{su1}(kN)$	Q _{su2} (kN)	$Q_{su3}(kN)$						
	А	В	С	D	Е	F	A/C	A/D	A/E	A/F		
CS1	1000	-892	1480	772	-	-	0.68	1.30	-	-		
CS2	1102	-972	1485	967	_	-	0.74	1.14	I	-		
CS3	1363	-1261	1533	994	1161	-	0.89	1.37	1.17	-		
CS4	1565	-1482	1512	982	1279	-	1.04	1.59	1.22	-		
CS5	1391	-1338	1480	964	-	1183	0.94	1.44	-	1.18		
CS6	1477	-1390	1480	964	-	1264	1.00	1.53	Ι	1.17		
CS7	1563	-1207	1625	979	-	1281	0.96	1.60	_	1.22		

表-6 最大耐力の実験値と計算値の比較

せん断耐力を求める際は、 $R_{o}=0.0$ 、 $\nu_{o}=1.7 \sigma_{B}^{-0.333}$ (CEB 式)として計算した。

図-6(1) 最大耐力の実験値と計算値の関係

t:鋼板の厚さ、b:柱幅、 $\sigma_{sv}:$ 鋼板の降伏強度、 σ_w: 横補強筋の降伏強度

基準試験体である在来 RC 柱 CS2 に対する鋼繊維補 強 RC 柱 CS3、CS4、鋼板補強 RC 柱 CS5、CS6 の最大 耐力実験値の比は、それぞれ 1.24 倍、1.42 倍、1.26 倍、 1.34 倍であった。このことから、せん断耐力において、 鋼繊維補強効果、鋼板補強効果があること、また、鋼繊 維補強量、鋼板補強量の違いに応じてせん断耐力が上昇 することが確認された。

次に、せん断耐力計算値に対する最大耐力実験値の比 をみると、在来 RC 柱 CS1、CS2 では A/D が 1.14~1.30、 鋼繊維補強 RC 柱 CS3、CS4 では A/E が 1.17~1.22、鋼 板補強 RC 柱 CS5~CS7 では A/F が 1.17~1.22 であった。 いずれもせん断耐力の計算式は、最大耐力を安全側にか つ精度良く評価することが確認された。

 $Q_{max}/Q_{mu} - Q_{su}/Q_{mu}$ 関係をみると、 $CS1 \sim CS7$ は Qmax/Qsu 線上に概ね同様の安全率を有して分布している。 精度良くせん断耐力が評価されていることがわかる。

3.6 既往の研究における実験値と本実験値の関係

既往の研究を対象としたデータベース 5 に、本研究 により得られた実験値と計算値の関係をプロットしてみ る。最大耐力の実験値と計算値の関係を図-6(1)に、 実験値/計算値とコンクリート強度の関係を(2)に、実験 値/計算値とせん断補強筋量の関係を(3)に、実験値/計 算値と軸力比の関係を(4)に示す。本研究によるデータ をみると、いずれの場合も計算値は実験値を安全側にか つ精度よく評価することがわかる。その精度は、既往の 研究により得られたデータベースの実験値と計算値の関 係に近似していることが確認できる。

鋼繊維補強 RC 柱、鋼板補強 RC 柱は、在来 RC 柱に 比べ、せん断耐力、変形性能に優れている。また、それ らせん断耐力は、靱性保証型耐震設計指針式において、 提案した有効横補強筋比式(1)、(2)を用いることにより、 安全側に精度良く評価できることが確認された。

× Sc

o S/F

0.8

1.0

P

0.6

軸力比

5. あとがき

本研究により、F-150N/mm²級柱部材のせん断性能を 把握できた。また、せん断耐力の評価方法を確認できた。 この成果を超高層建物の構造設計に活かしていきたい。

6. 謝辞

本研究は、一般社団法人建築構造技術支援機構の益尾 潔先生にご指導いただいた。ここに記して謝意を表す。

【参考文献】

- 1) 高津比呂人、木村秀樹、石川裕次、三井健郎、武田 浩、「鋼繊維を混入した超高強度鉄筋コンクリート柱 部材に関する実験的研究」、竹中技術研究報告、 pp.1-10, No.58, 2002
- 2) 山本佳城、中島 徹、渡邊悟士、清水良広、「設計基 準強度 200N/mm² の超高強度プレキャストコンク リートの超高層鉄筋コンクリート造住宅への適用」、 コンクリート工学、pp.37-42、Vol.49、No.8、2011
- 3) 細矢 博、舟山勇司、河野政典、「Fc150N/mm² 級コ ンクリートを用いた柱部材の構造性能の実験的研究」、 奥村組技術研究年報、No.39、pp.29-36、2013.9
- 4) 日本建築学会、「鉄筋コンクリート造建物の靱性保証 型耐震設計指針・同解説」、1999
- 5) 黒沢俊也、森本敏幸、市川昌和、中岡章郎、「超高強 度材料を用いた鉄筋コンクリート柱および梁部材の 実験結果データベースによる各種強度算定式の適合 性の検討」、コンクリート工学、Vol.44、No.2、 pp.14-22、2006.2

環境配慮型高強度コンクリートに関する研究 -フライアッシュを用いた高強度コンクリートの実機実験-

A Study on Environmentally Conscious High-strength Concrete - Tests of Fly-ash High-strength Concrete Using a Mixer at Concrete Mixing Plant -河野政典* 起橋孝徳**

要 旨

製造過程における CO₂の排出量が多いポルトランドセメントの使用量を抑えることによって環境 負荷低減に配慮した高強度コンクリートの開発を行った。開発に当たり、普通ポルトランドセメン トの 20 および 30%をフライアッシュに置換することによって、CO₂の排出量を 2~3 割低減したコ ンクリートを生コンプラントの実機ミキサで製造してフレッシュ性状、および圧縮強度特性に関す る試験を実施した。その結果、フライアッシュの置換により、80N/mm²級の低水結合材比の調合に おいても良好なワーカビリティーが得られ、混練および模擬柱への打設が可能であった。また、フ ライアッシュの混入により圧縮強度が増進し、模擬柱部材から採取したコア強度試験の結果、 100N/mm²の構造体強度が得られた。実験結果に基づき、CO₂の排出量を 2~3 割低減した設計基準 強度 80N/mm²のコンクリートの調合設計を行った。

キーワード:環境配慮型、高強度コンクリート、フライアッシュ、実機実験

1. まえがき

近年、地球環境保護への意識が高まる中、CO₂の排出 量を削減する取組みが各分野で進められている。建築物 にはコンクリート構造物が多く、大量のコンクリートが 使用される。そのコンクリートの製造において最も重要 な材料であるポルトランドセメントは、石灰石を主原料 とし、製造時の焼成過程で多くの CO₂ を排出する材料 である。一方、鉄筋コンクリート構造物においては、昨 今、長寿命化、高品質化が求められ、コンクリートの高 強度化が進んでいる。高強度を得るためには、セメント 量が多く必要となるので、高強度となるほど CO₂ 排出 量が多いコンクリートとなる。そこで、高強度コンク リートを対象として、セメントの使用量を抑えて CO₂ の排出量を低減した環境配慮型コンクリートの開発に着 手した。

環境配慮型コンクリートの実現手段として、セメント の一部を、コンクリート用混和材として主に土木分野で 使用され、コンクリートのフレッシュ性状の改善や長期 強度の増進が期待できるフライアッシュ¹⁾(以下、 FA)に置換する方法を採用した。FA は石炭火力発電所 で排出される副産物品であるため、普通ポルトランドセ メント(以下、N セメント)に比べ CO₂の排出量原単 位が極めて少ない材料である²⁾(表-1参照)。 そこで、FA を用いた高強度コンクリートの開発に当 たり、レディーミクストコンクリート工場の実機ミキサ で製造したコンクリートのフレッシュ性状の経時変化、 および圧縮強度特性に関する試験を実施した。本報では、 その概要について報告する。

2. 設計基準強度の目標値

N セメントは、全国で入手が可能で、廉価なセメント である。しかしながら、設計基準強度が 60N/mm² を超 えるコンクリートの調合に N セメントを用いた場合、 フレッシュコンクリートの粘性が極めて大きくなるため、 練上がりまでに時間を要し、コンクリート打設時の施工 性も低下する。また、水和発熱が大きくなり強度増進が 小さくなるので、さらに多くのセメントの割り増しが必 要となる。以上の理由から、N セメントの適応範囲の上 限は、設計基準強度 60N/mm² 程度までである。今回使 用する FA には、ワーカビリティーの改善、水和発熱の 抑制、長期強度の増進効果があることが知られている ¹⁾。そのため、N セメントの調合に FA を混和材として 使用することで、N セメントが適用できる設計基準強度 の範囲を大きくできる可能性がある。そこで、今回の開 発では 80N/mm²までを目標範囲とした。

FA を使用したコンクリートの研究および実施例につ

*技術研究所 **建築本部建築部

いては、普通強度の範囲ではみられるものの、高強度領 域での研究報告は少ない。また、実用化に当たっては、 フレッシュコンクリートの性状変化、部材に打設したコ ンクリートの構造体強度の確認が必要である。そこで、 夏期、標準期、および冬期において生コン工場の実機プ ラントでコンクリートを製造し、模擬柱にコンクリート を打設する実験を計画した。

3. 実験概要

3.1 使用材料と調合

使用材料を表-1に、使用した FA の品質試験値を表 -2に、コンクリート調合の一覧を表-3に示す。FA には FA II 種で JASS5 M-401³⁾の品質基準に適合するも のを使用した。Nセメントのみを用いた調合において、 設計基準強度 60N/mm²に対応する水セメント比は一般 的に 27~29%となる。今回の実験では、N セメントの みの調合の下限 W/C を 27%とした(27FA00 調合)。FA を用いた調合は、設計基準強度 80N/mm²を目標範囲と しつつ、N セメントのみの調合と比較するため、27%を 中心に水結合材比を 23~33%とした。

FA 置換率については、強度発現や中性化抵抗性を考 慮し、20%以下と設定されることが多い¹⁾。今回の開 発ではセメントの使用量を抑え、より CO₂の排出量を 低減させたコンクリートにするため、置換率 20%の他、 30%も試験水準に加えた。

使用材料の CO₂ 排出量原単位(**表**-1)から算出し た各調合の 1m³当たりの CO₂排出量を**表**-3に示す。N セメントのみの調合(**表**-3中の FA00)から、FA を 20%置換することで約2割、30%の置換では約3割、 CO₂の排出量が少ない調合となる。

41FA00 は、33FA20 の N セメントの単位量と同一と した調合である。33FA20 は、41FA00 に FA を外割り混 入(細骨材置換)した調合となり、FA を外割り混入し た場合についての影響を把握することを目的としている。

フレッシュコンクリートの管理目標値を**表-4**に示す。 水結合材比 23、27%のスランプフローは 65±10cm、 33%は60±10cm とした。

3.2 試験項目

試験項目を表-5に示す。FA を用いた調合については、フレッシュコンクリートの測定をコンクリートの練 上がりから 120 分まで実施した。

FA を用いた調合の構造体強度については、打設した 模擬柱からコアを採取し、強度試験により確認した。模 擬柱は、断面 1.0×1.0m、高さ 1.0m の無筋コンクリー トで、上下面を厚さ 20cm の発泡スチロールで断熱した。 N セメントのみの調合 (FA00)の構造体強度につい ては、JASS5T-606³⁾ (簡易断熱養生供試体による構造 体コンクリート強度の推定方法)に準拠した簡易断熱供

種別	記号	銘柄・産地等	物性値	00 ₂ 排出量 原单位 (kg-00 ₂ /t)
セメント	C	普通ポルトランド セメント	密度:3.16g/cm³	766.6
混和材	FA	フライアッシュⅡ種 舞鶴産	密度:2.25g/cm³	19.6
勿<u>₽</u>++	S1	兵庫県西島産 砕砂	密度:2.58g/cm ³ 粗粒率:2.90	2 5
和中·何·利 S2		福岡県東谷鉱山産 石灰石砕砂	密度:2.69g/cm ³ 粗粒率:2.50	5.0
粗骨材	G	兵庫県西島産 砕砂	密度:2.62g/cm ³ 実積率:58.0%	2.8
化学 混和剤	SP	高性能 AE 減水剤	ポリカルボン酸系 密度:1.07g/cm ³	100~150

表-1 コンクリートの使用材料と CO₂ 排出量原単位^{*2)}

*CO2排出量原単位:材料を1t生産する過程において排出される002の量

表ー2 FAの品質試験値						
	強熱	比表	フロー	活性度	数(%)	メチレン
	減量	面積	值比	28日	91日	ブル ー 吸 差 量
	(%)	(air/g)	(%)			·///11
JIS A 6201 or JASS5 M-401 品質基準値	4.0 以下	3000 以上	100 以上	80 以上	90 以上	Ι
夏期	2.1	3870	108	86	96	0.33
標準期	2.0	3510	109	82	108	0.44
冬期	2. 2	3650	104	88	104	0.43
強熱減量、比表面積、フロー値比の品質基準値は JASS5 M-401 ²⁾						

表-3 試験調合の一覧

	w /n	FA	w/c		Ì	単位量	t(kg/n	ŕ)		ぽ当たりの
記 号	W/B	置換率	W/U (0/)	w	H	В	C1	\$	C	002排出量
_	(70)	(%)	(70)	VY	С	FA	51	32	u	$(kg-00_2/m^3)$
23FA20	22	20	28.8	160	557	139	381	265	880	435
23FA30	23	30	32.9	100	487	209	367	255	880	382
27FA00		0	27.0		611	0	467	325	838	474
27FA20	27	20	33 <u>.</u> 8	165	489	122	426	296	867	382
27FA30		30	38 <u>.</u> 6		428	183	415	288	867	337
33FA00	22	0	33.0		515	0	500	348	849	400
33FA20	<u>აა</u>	20	41.3	170	412	103	469	326	867	323
41FA00	41.3	0	41.3		412	0	511	355	891	322
W 水(C	W:水(CO₂排出量原単位は0とした) B:結合材									

表-4 フレッシュコンクリートの管理目標値

水結合材比	23%	27%	33%	41.3%
スランプフロ ー または スランプ(cm)	65±10		60±10	21±2
空気量(%)	2.0=	±1.5	3.0=	±1.5

表一5 試験項目

試驗	検項目		内容
フレッシュ試験		スランプ	フロー(スランプ)、空気量、温度
	経時試験	FA 🗄	置換調合 0、45、90、120 分
 圧縮強度		標準養生	、簡易断熱養生:7、28、56、91日
模擬柱	温度	FA 置換	中央、端部
1x1x1m	コア強度	調合	中央、端部:28、56、91日

試体により強度確認を行った。簡易断熱供試体は、厚さ 200mmの発泡スチロールで6面断熱した養生箱で材齢 7日まで保管し、その後現場封緘養生とした。

模擬柱、および簡易断熱供試体の温度履歴については、 熱電対を取付け測定した。

4. 実験結果

4.1 フレッシュコンクリートの性状

N セメントのみの調合では、フレッシュコンクリートの粘性が極めて大きくなるため、コンクリート打設時の施工性が劣る。しかし、FA で一部置換することにより粘性が抑えられ、水結合材比 23%の調合においても 模擬柱への打設が十分可能であった。フレッシュコンク リートの試験時のスランプフローの状況を写真-1に、 模擬柱の打設状況と養生状況を写真-2に示す。

フレッシュコンクリートの試験結果の一例として夏 期におけるスランプフローの経時変化を図-1に示す。 スランプフローについては、90分まで目標範囲内に あった。120分では目標範囲を外れる調合もみられたが、 高性能 AE 減水剤を後添加することによりスランプフ ローが回復することを確認した。なお、空気量について は、120分まで目標範囲内にあり、時間経過に伴う変化 が小さかった。

4.2 構造体コンクリートの温度

模擬柱と簡易断熱養生で計測したコンクリートの温 度履歴の一例として、夏期における 23FA20 のデータを 図-2に示す。模擬柱では、コンクリートを打込み後、 約 18 時間で温度ピークに至り、中心部では 90℃を超え た。簡易断熱養生の温度履歴は、模擬柱端部よりやや高 い結果であった。

各季節ごとにおける模擬柱へのコンクリートの打込 み温度と、柱中心部の最高温度を図-3に示す。夏期と 冬期の最高温度には約 30℃の違いがみられた。FA 混入 調合では 23FA20 が最も単位 N セメント量が多く、最高 温度も最も高かった。

簡易断熱供試体の温度測定結果から得られた夏期にお

写真-1 フレッシュコンクリートの試験状況

写真-2 模擬柱の打設および養生状況

図ー3 模擬柱へのコンクリートの打込み温度と ける簡易断発出現でのの最高温度各調合の単位 N セメン

ト量の関係を図-4に示す。単位 N セメント量が多い ほど温度上昇量も大きくなる傾向がみられ、FA で置換 した場合においても、その置換率に関わらず、温度上昇 量は、単位 N セメント量に依存する傾向がみられた。 すなわち、フライアッシュは発熱温度上昇にほとんど影 響を与えないことがわかった。

4.3 圧縮強度

a.標準養生と簡易断熱養生の強度発現傾向

標準期における標準養生と簡易断熱養生供試体の圧縮 強度を図-5に示す。水結合材比 27%の標準養生にお いて、N セメント量のみの 27FA00 と FA 置換調合 (27FA20、27FA30)を比較すると、N セメント量のみの 調合のほうが初期強度の発現が大きい。長期強度の増進 については、FA 置換調合のほうが大きく、高強度領域 においても FA による長期強度の増進が期待できること が確認された。

簡易断熱養生においては、標準養生と比較して、FA 置換調合の初期強度の発現が大きい。初期材齢時に高温 履歴を受けることによって FA のポゾラン反応が促進さ れ、強度が増進したと考えられる。

材齢7日と91日におけるFA置換率ごとのセメント 水比と圧縮強度の関係を図-6に示す。図-6のグラフ では、FA20とFA30は、FAを外割り混入した場合の圧 縮強度として表される。材齢7日ではFA00、FA20、 FA30に大きな違いはみられないが、材齢91日ではFA の混入率が大きいほど強度が大きくなる傾向が確認され た。

b. FA 強度寄与率

FA 調合指針¹⁾に示されている FA を使用したコンク リートの強度と、水セメント比の関係式を式(1)に示す。 式(1)中の強度寄与率 k について、既往文献⁴⁾に示され ている算出方法により、その値を求めた。

 $F_{Fa} = a(C + kFa)/W + b \tag{1}$

- ここで、*F_{Fa}*:フライアッシュを使用したコンクリートの 調合強度(N/mm²)
 - C : 単位ポルトランドセメント量(kg/m³)
 - F_a : 単位フライアッシュ量(kg/m³)
 - W : 単位水量(kg/m³)
 - k : フライアッシュ強度寄与率
 - a, b: 実験係数(N/mm²)

標準養生供試体の圧縮強度試験結果から算出した k 値 を図-7に示す。今回の実験結果から、標準期、冬期の k 値はほぼ同じであったが、夏期においてはやや大きい 結果となった。夏期のコンクリートの練上がり温度は 32~36℃であったので、練上がり温度が高かったことが k 値に影響していると考えられる。

今回の実験で使用した FA と同等品質の FA を用いて 得られている強度寄与率の文献⁴⁾ データを併せて示す。 今回の夏期の初期材齢の k 値は、文献データよりやや大 きいものの、それ以外においては、文献データにおおよ そ沿う結果であった。

簡易断熱養生供試体の圧縮強度試験結果から算出した

k 値を図-8に示す。簡易断熱養生は、標準養生に比べ 初期材齢時からk値が大きく、標準期、夏期では材齢に 伴う増進はみられなかった。k 値は夏期が最も大きく、 ついで標準期、冬期の順であり、初期材齢の養生温度が 高いほど、k 値は大きくなる傾向であった。夏期におけ るFAの使用が特に有効であるといえる。

c. 構造体強度(コア強度)

模擬柱の夏期における 91 日コア強度と結合材水比の 関係を図-9に示す。水結合材比 27%では、N セメン トのみの 27FA00 より、FA 置換調合のほうが強度発現 が大きく、80N/mm² 以上の強度が得られた。N セメン トを高強度領域に用いた場合、前述したようにセメント の水和発熱温度が高くなり、長期強度の増進が小さくな る。夏期においてはそれが顕著となる。Nセメントの一 部を FA で置換した場合、N セメントを減じた分、水和 発熱温度の上昇が抑えられ、長期強度の増進に有利に働 いたと考えられる。一方、FA については、セメントの 水和発熱による高温養生によりポゾラン反応が促進され、 強度増進に寄与し、Nセメントのみの 27FA00 より 91 日強度が大きくなったと考えられる。FA を 30%置換し た 27FA30 の圧縮強度が 27FA00 の強度を上回っており、 CO₂の排出量が約3割少ない調合で、同等以上の構造体 強度が得られた。

水結合材比 23%の調合においては、約 100N/mm²の構 造体強度が得られた。

d. 構造体強度補正値(S値)

調合設計に必要となる構造体強度補正値(S値)について検討するため、材齢28、56日の標準養生供試体強度と91日コア強度の差、28S91、56S91をそれぞれ求めた。 91日コア強度と28S91の関係を図-10に、56S91との関係を図-11に示す。FA20とFA30のS値を比較すると、 FA30のほうがやや小さい傾向にあった。FA20では、標準期と冬期はほぼ同等で、夏期が大きい傾向にある。

図-10 に示す ${}_{28}S_{91}$ においては、 $0N/mm^2$ を下回る範囲が見られる。調合設計に用いる S 値は $0N/mm^2$ 以上と定められているため ${}^{3),5}$ 、調合設計に用いる S 値としては、 ${}_{56}S_{91}$ のほうが合理的と考えられる。そこで、 ${}_{56}S_{91}$ を検討対象とすると、図-11 から、設計基準強度 $80N/mm^2$ に対する ${}_{56}S_{91}$ の設定値としては、FA20 調合の夏期では $15N/mm^2$ 、標準期および冬期では $10N/mm^2$ が妥当と考えられる。FA30 調合では、夏期で $10N/mm^2$ 、標準期で $5N/mm^2$ が妥当と考えられる。

4.4 調合設計(水結合材比の試算)

夏期、標準期、および冬期の実験から得られた標準 養生供試体強度と結合材水比との関係を近似式と併せて 図-12 に示す。N セメントのみを用いたコンクリート については、一般的に材齢 28 日の標準養生供試体強度 で管理されるため、FA00 については材齢 28 日強度の データを図中にプロットした。FA を用いたコンクリー

トについては 28 日以降も強度増進が期待できるため、 FA20、FA30 については材齢 56 日強度のデータをプ ロットした。水結合材比 33~27%において、FA 置換調 合の材齢 56 日強度は、FA00 調合の材齢 28 日強度と同 等以上となり、FA 置換調合のコンクリートは、標準養 生供試体の強度発現傾向からも、材齢 56 日強度での管 理が合理的であると考えられる。

実験結果に基づき、FA を用いた設計基準強度 80N/mm²の水結合材比を試算した。調合強度式 ⁵⁾を式 (2)に示す。供試体の管理材齢を 56 日として、S 値は $_{56}S_{91}$ とした。調合計算に用いた FA20 と FA30 調合の $_{56}S_{91}$ 、および水結合材比の計算結果を表-6に示す。水 結合材比については、図-12 に示した結合材水比と圧 縮強度の近似式に調合強度を代入して、算出した。 FA30 調合の S 値が FA20 調合より小さかったため、 FA30 調合の水結合材比は FA20 調合よりわずかに大き い結果となった。

$${}_{H}F_{m} = (F_{c} + {}_{m}S_{n}) + 2.0 \sigma \qquad (2)$$

$$\sigma = 0.1 (F_{c} + {}_{m}S_{n})$$

ここで、_HF_m:高強度コンクリートの調合強度 (N/mm²)

- F_c :設計基準強度 (N/mm²)
- $_m S_n$:標準養生した供試体材齢 m 日における圧縮 強度と構造体コンクリートの材齢 n 日にお ける圧縮強度の差による構造体強度補正値 (N/mm^2) 。ただし、 $_m S_n$ は0以上の値とする。 ここでは $_{50}S_{01}$ とする。
- σ : コンクリートの圧縮強度の標準偏差 (N/mm²)

表-	- 6	設計基準強度 80N/mm ² の
		水結合材比(W/B)の計算結果

	FA	20	FA	30
	₅₆ S ₉₁ (N/mm²)	W/B(%)	₅₆ S ₉₁ (N/mm²)	W/B(%)
夏期	15	24.9	10	25. 7
標準期	10	27.4	5	27.7
冬期	10	27.4	-	-

5. まとめ

普通ポルトランドセメントの使用量を抑えて CO₂の 排出量を低減した環境配慮型高強度コンクリートを開発 するため、水結合材比 23~33%の範囲について、FA を 20 および 30%置換した高強度コンクリートを実機ミキ サで製造し、フレッシュ性状および圧縮強度特性に関す る試験を実施した。得られた結果を以下に示す。

- i. 普通ポルトランドセメントの一部を FA で置換す ることにより、フレッシュコンクリートの粘性が 抑えられ、水結合材比 23%の調合においても混 練、および模擬柱への打設が可能であった
- ii. FA の混入により構造体強度が増進し、水結合材 比 23%の調合において 100N/mm²の構造体強度が 得られた
- iii. FA 置換調合のコンクリートの強度管理は、材齢 56 日が合理的である
- iv. 設計基準強度 80N/mm² 高強度コンクリートにお

いて、普通ポルトランドセメントをベースセメン トとし、CO₂の排出量を約3割低減する実施適用 可能なコンクリート調合を得た

6. あとがき

FAには、FAII種で JASS5 M-401 の品質基準に適合す るものを使用するが、火力発電所や使用した石炭によっ て品質が異なるため、FA の産地ごとにフレッシュ性状 や強度発現性を確認する必要があるものの、今回の実験 の範囲では、普通ポルトランドセメントをベースとして 80N/mm² までの調合設計が可能であることが確認でき た。一般的に 60N/mm² を超える場合には、普通ポルト ランドセメントより割高となる低熱または中庸熱ポルト ランドセメントが用いられているため、80N/mm² クラ スの高強度領域においては、CO₂の排出量の低減のみな らず、FA の供給体制が整備されている環境であれば、 コスト低減の可能性も見込める。今後は、構造体強度補 正値の蓄積を進め、さらに調合の合理化を図りつつ、現 場適用に備えたい。

【参考文献】

- 日本建築学会、「フライアッシュを使用するコンク リートの調合設計・施工指針・同解説」、2007.10
- 2) 土木学会、「コンクリートの環境負荷評価」、コンク リート技術シリーズ、No.44
- 日本建築学会、「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工事2009」、2009.2
- 4) 大久保敏彦、中村成春、桝田佳寛、手島則夫ほか、 「分級フライアッシュを使用した高強度コンクリートに関する研究 その2強度予測式の作成」、日本建築学会大会梗概集(1997)、pp61-62、1997.9
- 5) 日本建築学会、「高強度コンクリート施工指針・同解 説」、2013.11

太陽光発電設備および蓄電設備の有効活用に関する研究 A Study on Effective Use of Solar Power Generation and Storage Facilities _{茂木正史*岩下将也*}

要 旨

太陽光発電設備及び蓄電設備を設置し、その活用実績のデータを収集している。定格発電能力 43kW(面積 300m²)の太陽光発電設備の約6か月間の運転における発電実績は、計画時に標準的な 予測方法(JIS)で求めた発電量を14%上回っている。また、太陽光パネルを散水冷却することによ り、太陽光発電設備の発電効率が5.4%向上し、パネルを設置した屋根の下部に位置する部屋の空調 の熱処理量(電力量)が37%減少することを確認した。定格蓄電能力24kWhの蓄電池の実建物からの充電、建物への給電の実績において、充給電における電力損失は8.8%であった。また、「最大 需要電力(電力料金算定の根拠)」の削減量を最大にするための蓄電設備の運転方法を導き、これ を適用した場合の削減量を明らかにした。

キーワード:創エネルギー、再生可能エネルギー、太陽光発電、蓄電池

1. まえがき

地球環境を保護するために、再生可能エネルギーの活 用を促進する動きが加速している。しかし、我が国の 2010年の発電電力量のうち、水力発電を除く再生可能 エネルギーによる発電電力量は約 1.2%にとどまり¹⁾、 経済産業省は、調達価格と調達期間を優遇する固定買取 制度を定め、再生可能エネルギーの導入拡大を図ってい る。

一方、創エネルギー技術を高効率化する取り組みにも 力が注がれている。経済産業省が提唱している、「建築 物における年間での一次エネルギー消費量が正味(ネッ ト)でゼロまたは概ねゼロとなる建築物」である ZEB²⁾ (ネット・ゼロエネルギービル)の実現のためには、省 エネルギー技術に加えて創エネルギー技術の高効率化が 必須である。

また、次世代の電力網として期待される「スマートグ リッド」は、情報通信技術を活用しながら電力系統を安 定的かつ高効率・経済的に運用することを目的としてい る。その実現には、自然由来であるが故の創エネルギー による発電電力量の変動への対処や建物内で部位ごとに 異なる需要電力を平準化する仕組みが必要であり、太陽 光パネルなどの発電設備と、蓄電池などのエネルギー貯 蔵設備を利用し、建物内、建物間でエネルギーを融通す る技術の高度化が求められている。

太陽光パネルは本体温度に比例して発電量が低下する 特性を有しており、本体温度の上昇を抑えれば発電量の 低下を防げると想定されるので、パネル数枚を使った散 水冷却による効率低下を抑制する効果を実験的に調査し た事例はあるが³⁾、実規模大での効果を検証した事例 は報告されていない。また、屋根に設置した太陽光パネ ルによる下階への日射遮蔽効果、散水冷却することによ る下階への遮熱効果が期待されるが、これを評価した例 もない。

そこで、本研究では創エネルギー設備を実建物に適用 し、実績データの収集や評価を行っている。具体的には、 再生可能エネルギーの固定買取制度を利用して技術研究 所の実験施設に太陽光発電設備を設置し、発電事業の成 立性の評価や、太陽光パネルの冷却による発電効率の向 上、パネルの設置、およびその冷却による屋根下部の部 屋への冷房負荷低減効果を確認する試験を実施している。

スマートグリッドに関しては、蓄電池を中核としたシ ステムを構築し、太陽光発電設備と連携した蓄電池の放 充電の推移を測定した事例⁴⁾はすでにあるが、さらな るデータの蓄積が必要である。そこで、技術研究所の研 究施設に蓄電システムを導入して充放電実験を行い、蓄 電池の充放電性能に関するデータ収集や、太陽光発電設 備との連携について調査した。

本報告では、上に述べた太陽光発電設備と蓄電設備に 関する実験的研究の結果とその有効活用について述べる。

表一1 太陽	光パネルの仕様
型式	SPR-210N-WHT-J
セル種類	多結晶シリコン
公称最大出力	240W
最大変換効率	14.60%
外形寸法	1,652 × 999 × 45mm
重量	20kg
温度損失	−0.38%/K 25°Cで0%

*技術研究所

2. 太陽光発電設備の検討

2.1 太陽光発電設備の設置

a. 太陽光パネルの仕様

太陽光パネルに使用されている主な材料は、シリコン 半導体と化合物半導体であり、シリコン系は多結晶、単 結晶、アモルファスに分類され、この順に変換効率とコ ストが高くなる。表-1に今回使用した太陽光パネルの 仕様を示す。また、製品検査結果データから作成した各 パネルの発電性能ヒストグラムを図-1に示す。同図中 には、平均値等の統計値も掲載している。定格出力 240W に対して平均値は 242.8W で、定格値の 1.3%増と なっている。

b. 太陽光パネルの設置

太陽光パネルを技術研究所の実験施設の屋根に設置した。設置状況を図-2、写真-1に示す。また、太陽光 パネル設置条件を表-2に示す。なお、図-2に示すように散水冷却実験用に発電容量を10kWにまとめたグ

写真-1 太陽光発電パネルの設置状況

表2	太陽光/	《ネル設置条件
1 -		小小阪巨木口

設置場所	東経140.04°、北緯34.04°
方位角度	北東22 [°]
傾斜角度	3°(屋根勾配)
パネル枚数	180枚
パネル面積	300m ²
定格出力	43.2kW

ループを 2 つつくり、散水冷却を行わない A グループ、 散水冷却を行う B グループとして両者の発電電力量を 比較した。

2.2 発電量の予測と実績

太陽光発電設備の発電量の予測は、独立行政法人新エ ネルギー・産業技術総合開発機構(NEDO)の日射量 データベース MONSOLA-11 を用い、解析方法は JIS C 8907「太陽光発電システムの発電電力推定方法」を使う のが一般的であり、この方法で算出された発電量をもと に事業計画が立てられる。JIS の月間発電量の予測式を 以下に示す。

図-2 太陽光パネルの設置状況

 $E_{pm} = K' \times K_{pt} \times P_{as} \times H_{am}/G_s$

ここで、*E_m*:月間発電量[kWh]

K':設計係数(付帯機器の特性を評価)
 K_{pt}:温度補正係数
 P_{as}:アレイ(全パネル)定格出力[kW]=43.2

Ham: 月積算傾斜面日射量[kWh]

Gs: 基準日射強度[kW/m²]=1.0

図-3に日射量データベース MONSOLA-11 (つくば のデータ)を用い、JIS C 8907 の方法で予測した発電量、 測定した発電量の実績値、日射量の測定値を用い、JIS の方法で予測した発電量を示す。データは 2013 年 6 月 7日から11月30日までのものである。実績値(総発電 22.096kWh) は日射データベースによる予測値 (19.394kWh)を 14%上回り、測定日射量による予測値 (20,777kWh)を 6%上回っている。日射量の実績値が データベースより多かったことが JIS 予測値と実績の差 異の主要因であるが、機器の損失係数や温度損失係数が 定数として設定されていることも予測精度に影響してい ると推測できる。計画段階において、当システムは 8.5 年で初期投資費用を回収できると予想したが、これまで の実績ではほぼ予測通りの発電結果が得られている。今 回は1年に満たない期間での結果であり、さらに計測を 続けて検証データを蓄積する予定である。

2.3 散水冷却による発電効率向上と室内熱負荷軽減 a.実験概要

図-2に示す定格発電量の等しい A グループと B グ ループの太陽光パネルを計測対象とし、B グループのパ ネルを散水冷却した。気象データとしては、日射量と気 温を測定した。また、太陽光パネルの表面温度、太陽光 パネル下部の折板表面温度、太陽光パネルが設置されて いない部分の折板表面温度を測定した。図-4に表面温 度測定部位を、図-5に散水設備の概要を示す。散水は 8:00~17:00 の時間帯に 1 分散水、2 分休止のスケ ジュールで実施した。散水スケジュールは、分単位での 発停制御を行うこととし、水道圧による散水で散水時に パネル全面が濡れ、停止時に乾燥しない条件から設定し た。また、太陽光パネルの発電効率は表面温度を下げる ほどが高くなるが、日射量の少ない曇天時の散水を避け るために表面温度が 30℃以上で散水するように給水を 制御した。散水冷却実験を行ったのは、6月7日から7 月 12 日までである。実験の進行に伴って水道水中の水 溶物質(消毒剤等)が太陽光パネルのガラス面に付着す ることが判明した。別途試験中の勾配 10°のパネルに 散水する場合には水溶物質の残留はなく、当設備の勾配 3°においては水溶物質を含んだ水道水が散水時間以外 の時間帯にパネル面で完全蒸発するために成分が残留し たと考えられる。

b. 散水による発電効率向上

図-6に7月1日から20日までのAグループ(散水 無し)とBグループ(散水有り)の発電量およびパネ ル温度の推移を示す。散水によって、BグループはA グループに比べて最大15℃程度パネル表面温度が下が り、発電量が増加している。散水期間(36日間)の総 発電量は Bグループが1,249kWh で、Aグループは 1,186kWh であり、散水によって発電量が5.4%向上した。

図-5 散水設備の概要

図-7に、散水期間における日射量と散水量の関係を 示す。曇天時の散水を避けるためにパネル表面温度が 30℃以上で散水するように制御したので、散水量は積算 日射量の増加に応じて増えている。なお、散水した 35 日間の総散水量は 17.3m³ であり、屋根の単位面積、単 位時間当たり 0.844L/($m^2 \cdot h$)である。その一部が気化 熱、その他が熱伝導によりパネルを冷却する。なお、折 板屋根に散水して熱負荷を軽減した事例での給水量は 2.19L/($m^2 \cdot h$)と報告されており⁵、曇天時の散水を 中止する制御の有無によって両者の差が生じたものと考 える。

2.4 室内熱負荷の低減

太陽光パネルを敷設してある屋根の下部にコンクリー ト実験室(107m²)があり(図-2)、設定温度 20℃で 24 時間運転している。実測データをもとに、太陽光パ ネルの設置やパネルに散水することによる、実験室の空 調電力低減効果を算出した。表-3は実験室屋根部材の 熱特性である。図ー8に、パネル下部で散水の有りと無 し、またパネル無しの部分の屋根表面温度の比較を示す。 日射の無い日は3者が同程度の温度となっているが、日 射の有る日は、パネル無し、パネル (無散水)、パネル (散水)の順に表面温度が低くなっている。図-9に、 パネル、および散水の有無と屋根からの熱浸入量を示す。 熱浸入量は屋根表面温度と室内温度の差に熱貫流率を乗 じて求めた。太陽光パネルを設置して散水しない場合の 屋根からの熱浸入量は、パネル無しの場合の 24%減、 パネルに散水した場合は散水しない場合の 37%減、パ ネルを設置しない場合の 53%減となった。したがって、 空調の電気量も熱浸入量とほぼ同率で減少すると考えら れる。

3. 蓄電設備の検討

3.1 蓄電設備システムの概要

研究棟に導入した蓄電システムを図-10 に示す。実験用蓄電池として電気自動車に搭載されたリチウムイオ

図-7 散水期間における日射量と散水量の関係

表-3 実験室屋根部材の熱特性

構成ななが部位	厚さ	熱伝導率	熱抵抗
構成物及び即位	mm	W∕mK	m²K/W
外部熱伝達部	-	1	-
折板(鋼材)	0.8	53	1.51E-05
ペフ(折板に貼付)	4	0.031	0.13
空気層	500		0.09
グラスウール	50	0.038	1.32
ジプトーン	9	0.22	0.04
内部熱伝達部	_	_	0.11
熱貫流	1.69		

図-8 パネル及び散水の有無と表面温度の推移

図-9パネルおよび散水の有無と熱浸入量

ン電池を利用した。また、同建物には定格発電能力 4.4kWの太陽光パネルが設置され、その発電電力は建物 全体に供給されている。蓄電池は「パワーステーショ

図-10 導入した蓄電システム

表-4 蓄電池の仕様

電池種類	リチウムイオン電池
構成	48モジュ ー ル
定格電圧	360V
蓄電量	24kWh
最大出力	6kVA(2 × 3kVA)

ン」、「中継ボックス」を介して 4F の分電盤に接続され ている。パワーステーションが、蓄電池の充電量等を管 理し、設定したスケジュールに従って充放電の制御を行 う。電力会社からの給電系統と蓄電池系統の切り替えは、 中継ボックス内の開閉器の操作によって行われる。蓄電 池の仕様を表-4に示す。最大出力 3kVA の系統が2系 統あり、どちらかの系統の負荷が最大出力を超えると、 瞬時に電力会社の系統に切り換わる仕組みとなっている。 系統切換時間は 10ms 以内の仕様であるが、瞬時停電は 電気機器によっては対策が必要である。

3.2 充放電性能

電力量メーターを中継ボックス内に取り付け、夜間に 充電、昼間に放電するスケジュール設定のもと、蓄電池 の充電量と放電量を測定した。測定結果を図-11 に示 す。本実験中は、スケジュール通りに充放電が行われた が、放電量は充電量よりも少なく、充放電時に 8.8%の 電力損失があることを確認した。一般的なリチウムイオ ン電池の損失は 10~20%であり、概ね一致している。

3.3 太陽光発電との連携

昼間の太陽光発電電力を蓄電池に貯めて夜間に使用す る方法の動作を評価する実験を行った。図-12 に太陽 光パネルと蓄電池の連携を示す。晴れの日の9時より蓄 電を開始すると、太陽光発電の発電能力より蓄電池の充 電能力の方が大きいので発電電力をすべて充電できた。 夜間は、電力需要が蓄電池の放電能力(最大 6.0kW)を 越えない 19時以降に蓄電池より 4F に放電し、深夜の

図-12 太陽光パネルと蓄電池の連携

電力需要を賄った。さらに、天候が晴れの場合には、太 陽光による発電電力の全量を蓄電し、それをすべて夜間 に消費する動作を確認した。

3.4 年間最大需要電力(デマンド)の削減

電力需要の少ない夜間に電力を貯めて、電力需要の ピークカットに使えばデマンドを削減でき、電力料金の 値下げに繋がる。そこで、本システムの蓄電池を夜間に 充電し、昼間に放電した場合のデマンド削減効果を予測 した。

a. 蓄電池によるデマンド削減の考え方

図-13 に、蓄電池を用いた場合のデマンド削減の考 え方を示す。蓄電池を深夜に充電し、昼間に放電する場 合、デマンド削減値は、日中の建物の需要電力の推移 カーブに対する、蓄電池の容量、蓄電池の最大出力に よって決まる。図中の①のように、短時間に大きなデマ ンドが発生する場合には、蓄電池の最大出力によってデ マンドの削減値が決まる。図中の②のように、デマンド と同程度の需要電力が長時間続く場合には、蓄電池の容 量によってデマンドの削減値が決まる。当実験施設は① に該当するが、デマンド削減のために蓄電池の運用方法 を決めるには、建物の電力量消費の特徴を把握する必要 がある。

b. 実験対象施設の電力量消費の特徴

図-14 に、研究棟の平成 24 年度の需要電力の需要

図-14 需要電力の需要別・時間帯別頻度(研究棟)

別・時間帯別頻度を示す。デマンドは 60kW であり 9 時 ~10 時に 1 回発生している。また、デマンド値に近い 55~58kW の需要電力も午前中に各 1 回発生している。 この時間帯に蓄電池を利用することで、デマンドの削減 が期待できる。

図-15 に、デマンドを観測した日の需要電力量の推移を示す。発生日は1月4日であり、8~9時に58kW、 9~10時に60kWの需要電力量が発生している。一般的 にデマンドは長期間建物を使わなかった後などの特殊日 に発生する。最大需要電力の発生状況に対応して、8時 から4時間、最大出力で蓄電池を放電することで、 54kWまでデマンドを落とせる。しかし、より効果的な 運用をするには、時々刻々と変わる需要電力の予測と、 蓄電池の制御が必要となる。特に、需要電力の予測精度 の向上は課題であり、天気予報を用いる方法や、実績 データに基づく統計的予測方法の採用などが有効と考え る。

4. まとめ

これまでの気象の下で、太陽光発電設備の発電実績は 設備の計画時に予測した値を上回り、事業計画が成立す る結果となっている。また、パネルに散水することによ

図-15 デマンド観測日の電力量推移(1月4日)

る発電効率の向上とパネル下部の空調電力削減効果の実 績値が得られた。これらの結果より、周辺技術によって 発電効率の向上が可能であること、太陽光パネルを設置 することで下室の冷房負荷を下げる遮熱効果が得られる ことが明らかになった。なお、水道水で冷却した場合に パネルに付着する成分についての検討が今後の課題であ る。

また、蓄電設備の放充電性能や太陽光発電設備との連 携動作について実建物でのデータを取得した。引き続き、 発電できない場合や非常時などの種々の状況に応じて、 再生可能エネルギーの活用を高めることができる制御方 法の研究を進めていきたい。

5. あとがき

創エネルギー技術の代表として、太陽光発電設備と蓄 電設備を実建物に適用して活用方法を研究している。更 に、設備の劣化等にも着目した計測を続け、創エネル ギー技術の普及に貢献したい。

【参考文献】

- 資源エネルギー庁、「平成 24 年度エネルギーに関する年次報告(エネルギー白書 2013)」、2014
- 経済産業省、「ZEBの実現と展開に関する研究会報告書」、2009.11
- 3) 坂本他、「太陽光発電モジュールの散水冷却による発 電効率向上にかかわる実験」、日本建築学会大会学術 梗概集、2005.9
- 4) 青木他、「建築設備への分散型エネルギーシステムの 導入に関する研究」、日本建築学会大会学術講演梗概 集、2010.9
- 5) 島田他、「折板屋根大規模建築物の温熱環境改善に関 する研究 その 6 高発熱を有する工場への屋根散 水の適用事例」、日本建築学会大会学術講演梗概集、 2002.8

再生可能エネルギーの利用技術の 導入効果に関する研究 A Study on the Effects of Introducing Technologies for

Using Renewable Energy

岩下将也*

要 旨

ネットゼロエネルギービルの実現に向け、その評価方法の整備が各企業・団体によって進められ ている。しかしながら、再生可能エネルギーを利用する省エネルギー技術の評価方法は、十分に整 備されていない。本検討では、再生可能エネルギーを利用する省エネルギー技術のうち、代表的な ものとして、地中熱利用空調システム、太陽熱利用空調システムについて、その導入規模とエネル ギー削減量の関係の把握した。建築面積を制約条件として、最もエネルギー削減量が大きくなる地 中熱利用空調システムの熱交換井の計画方法を提案した。

キーワード:地中熱利用、組合せ最適、太陽熱利用、デシカント空調

1. まえがき

経済産業省がネットゼロエネルギービル(以下 ZEB)のビジョンを掲げて以降、その実現性についての 検討が各企業・団体によって進められている。2013 年 には、(社)空気調和衛生工学会が、現状の新築建物に ついての ZEB の実現性を評価するための指標を定めた ¹⁾。この指標では、「現状の建物がどれだけ ZEB に近い か」を、「ZEBready」「nnZEB」という考え方で表し、 標準ビル(レファレンスビル)を基準とした評価をして いる (図-1、2)。これらの指標からも、早期の ZEB 実現に向けた動きが活発に進められていることが わかる。

ZEB の実現性の評価には、建物の敷地内(オンサイ ト)において、年間エネルギー消費量に対し、年間エネ ルギー生産量が同等である必要があり、建物への創エネ ルギーおよび、省エネルギー技術の導入効果の予測が必 須となる。既報²⁾において、ZEB の実現性を評価する ため、建物の原単位シミュレーションプログラム³⁾を 用いて、建物外皮、照明・空調設備についての一般的な 省エネルギー技術の導入効果を予測した。また、

(独)建築研究所より「一次エネルギー消費量 WEB 算 定プログラム」⁴⁾ が公開されており、建物のエネルギー 消費量の予測、汎用的な省エネルギー技術の導入効果に ついて、比較的容易に計算することができるようになっ た。

しかし、省エネルギー技術の中でも、再生可能エネル

ギーを利用する場合には、上記のプログラムが対応でき ないことが多い。ZEBの実現には、再生可能エネル ギーの利用は重要な課題であり、これらの技術の導入効 果の予測も必須となる。

本検討では、再生可能エネルギーを利用する空調シス

^{*}技術研究所

テムとして、地中熱利用空調システムと、太陽熱利用空 調システムについてのエネルギー量を予測し、導入効果 を評価した。地中熱利用空調については、適用対象とす る部屋の熱負荷に対して、導入効果が最大となる熱交換 井の計画方法ついて示した。太陽熱利用空調システムに ついては、夏期のデシカント外調システムを対象に、太 陽熱集熱パネルの設置面積と集熱量、集熱効率の関係を 示し、その考察をした。

2. 地中熱利用空調システムの評価

2.1 概要

図-3に地中熱利用空調システムの概要を示す。地中 熱利用空調システムは、クローズド・ループ型と、オー プン・ループ型の二つに大別される。オープン・ループ 型は地下水をくみ上げその熱を利用する方式である。地 下水の有無や、地下水の利用・排水に関する地域の条例 によって採用の可否が決まり、国内での採用は比較的少 ない。クローズド・ループ型は、熱交換井と地中熱源 ヒートポンプの間に冷熱媒を循環させ、地中熱を利用す る方式であり、一般的に多く採用されている。本検討で は、クローズド・ループ型を対象とし、その年間エネル ギー削減量を評価する。

2.2 評価方法

地中熱利用空調システムは、年間で安定した温度を保 つ地中との熱交換によって省エネルギーを図る空調シス テムであり、外気と熱交換をする空気熱源空調システム と対比される。よって、地中熱利用空調システムの導入 効果を、空気熱源利用空調システムを導入した場合との 年間のエネルギー消費量の差によって、評価するものと した。

2.3 各システムの年間エネルギー消費量の計算方法

年間エネルギー削減量の計算方法を図-4に示す。気 象データ、建物モデルをもとに、各系統の年間熱負荷を 計算する。年間熱負荷をもとに、地中熱利用空調システ ム、空気熱源空調システムの年間エネルギー消費量を予 測する。地中熱利用空調システムについては、熱交換井

図-3 地中熱利用空調システム

図-5 室・空調モデル

の本数別に年間エネルギー消費量を計算する。両システ ムの年間エネルギー消費量の差分をとり、地中熱利用空 調システムを利用した場合の年間エネルギー削減量を予 測する。

建物モデルの構築、年間熱負荷の計算には、ESUM ver5.0³⁾を用いる。空気熱源空調システム、地中熱利用 空調システムの年間エネルギー消費量の予測には Ground Club ver1.0⁵⁾(地中熱利用空調システムのエネル ギー消費量予測プログラム)を用いる。

冷房負荷

6/29

外気処理系統の年間熱負荷

8/28

10/27

-30

-40

1/1

3/1

図-8

4/30

2.4 建物・空調モデル

建物・空調モデルを図-5に示す。中央に東西軸のコ アをもつオフィスのワンフロアで、南北に執務室をとる。 高断熱仕様とし、開口部には Low-E 複層ガラスを、外 壁には 25mm の断熱材を用いる。開口率は各方位共通 で 50%とする。地中熱利用空調システムの熱処理の系 統は、南側ペリメータ、北側ペリメータ、外気処理の 3 種とする。冷暖房の切り替えは、熱負荷に応じて自動的 になされるものとする。ヒートポンプの成績係数は冷暖 4.0 とし、室内機はペリメータ 8 台、外気処理 4 台とす る。

2.5 各ゾーンの年間熱負荷

各ゾーンの年間熱負荷の計算結果を図-6、7、8に 示す。南側ペリメータ系統は、通年で冷房負荷が発生し ている。建物の断熱性能が高いため、日射の浸入熱が影 響しているものと推察される。外気処理系統、北側ペリ メータ系統は、冷房熱負荷と暖房熱負荷の変化が、夏冬 の季節の変化に合致している。年間熱負荷の総計は、外 気処理系統が最も大きく、次いで北側ペリメータ系統、 南側ペリメータ系統の順となった。最大熱負荷は、南側 ペリメータ系統が最も大きく、次いで北側ペリメータ系 統、外気処理系統の順となった。

12/26

2.6 各系統の年間エネルギー消費量

予測した年間熱負荷をもとに、空気熱源空調システム、 地中熱利用空調システムの各系統の年間エネルギー消費 量を算出した。結果を図-9に示す。

南側ペリメータ系統と外気処理系統の年間エネルギー 消費量は、ほぼ同じ推移となり、北側ペリメータ系統が 最も少ない結果となった。各系統とも、空気熱源空調シ ステムと比較し、地中熱利用空調システムのほうがエネ ルギー消費量が少なくなっている。熱交換井を5本採用 した場合、南側ペリメータ系統、外気処理系統で20%、 北側ペリメータ系統で15%のエネルギー削減効果が得 られた。また、熱交換井が5本以上になると、年間エネ ルギー消費量の変化はほとんどなくなっている。これは 熱交換が十分進み、冷熱媒の温度が安定するためと推察 される。なお、各系統とも熱交換井が1本の場合、冷媒 が凍結したため計算不能となった。

図-10 に、空気熱源空調システムと比較した場合の 年間エネルギー削減量を示す。4 本以上の場合、年間エ ネルギー削減量は、南側ペリメータ系統が最も大きくな り、次いで北側ペリメータ系統、外気処理系統の順と なった。

2.7 各系統の熱交換井の決定

a. 熱交換効率と最大熱負荷による決定法

熱交換井の適切な本数は、系統の最大熱負荷をもとに、 地中熱ヒートポンプの成績係数、熱交換井の効率(オ フィス:70W/m)を用いて、式(1)で概算できる⁶⁾(以 下、これを概算法と称する)。この方法で計算すると、 熱交換井は、南側ペリメータ系統で7本、北側ペリメー タ系統で7本、外気処理系統で4本、合計で18本とな る。この時の年間エネルギー削減量は6,539kWhとなる。

$$n = \frac{1}{D} \cdot \frac{q_{\rm m}}{q_{\rm L}} \left(1 + \frac{1}{C_{\rm COP}} \right) \tag{1}$$

n :系統への熱交換井の設置本数[本] D:熱交換井1本当たりの長さ[m](=100) q_m:時刻別冷房負荷の最大値[W] C_{COP}:地中熱ヒートポンプの成績係数(=4) q_L:単位長さ当たりの熱交換量[kW/m] (=70(一般オフィス))

概算法を用いる場合、最大熱負荷をもとに熱交換井の 設置数を決めるが、年間エネルギー削減量の観点からは、 必ずしも効率の良い設置数になると限らない。南北ペリ メータエリア系統は、最大熱負荷については外気処理系 統より大きいため、熱交換井は7本必要な計算となって いる。しかし図-10 では、エネルギー削減量を大きく とるためには、南側ペリメータ系統への熱交換井6本か ら7本に増加させるより、外気処理系統を4本から5本 に増加させた方がよいことがわかる。

b. 最適配分による決定法

そこで、年間エネルギー削減量を増大させる観点から、 熱交換井を各系統に最適に配分する計画について検討し た。年間エネルギー削減量の総和を最大とする目的関数 (式(2))を定め、熱交換井の総和についての制約条件(式 (3))のもとで、各系統の熱交換井本数の組合せ最適解を 解いた。解法には遺伝的アルゴリズムを用いた。

目的関数:	$E_{max} = E_s + E_n + E_a$	(2)

制約条件:
$$N \ge n_s + n_n + n_a$$
 (3)

- E_s:地中熱利用による南側ペリメータ系統の 年間エネルギー削減量
- E_n:地中熱利用による北側ペリメータ系統の 年間エネルギー削減量
- E_a:地中熱利用による外気処理系統の 年間エネルギー削減量
- N:設置可能な熱交換井の総本数
- n_s:南側ペリメータ系統の熱交換井本数
- n_n:北側ペリメータ系統の熱交換井本数
- n_a:外気処理系統の熱交換井本数

図-11 熱交換井の最適な配分

結果を図-11 に示す。概算法に基づく配分方法も図 中に示している。すべての N において、概算法による 配分方法と比較して、年間エネルギー削減量をより大き くする別の配分方法があることが確認できる。その効果 は N が増加するに従い逓減していき、N=18 で概算法と ほぼ等しくなっている。

c. ボリュームスタディ

熱交換井の本数の上限は、設置可能な敷地面積によっ て決まる。図-5のフロアを基準階に持つ3階のオフィ ス(図-12)をモデルとし、ワンフロア当たりの熱交換井 の設置可能本数を検討した。相互に熱干渉が無いよう各 熱交換井の設置間隔を5mとし⁷⁾、設置可能な面を建築 面より内側とすると、熱交換井はワンフロア当たり11 本設置可能となる。最大熱負荷を用いた概算法をもとに 11本の設置を計画すると、南側ペエリメータ系統に7 本、外気処理系統に4本設置することで、4,251kWhの 年間エネルギー削減量を得ることができる。組合せ最適 解によれば、南側ペリメータ系統に3本、その他の各系 統に4本配分することで、5,571kWhの年間エネルギー 削減量を得ることができる。これは概算法と比較してエ ネルギー削減率が31%大きい計画となる。

3. 太陽熱利用空調システムの検討

3.1 概要

太陽熱利用空調システムは、太陽熱集熱パネルによっ て温水を生成し、それを補助熱源として空調システムに 利用する。生成した温水は、冬期の暖房に利用すること が一般的である。最近では年間で温水を無駄なく利用で きるよう、夏期においても温水を有効利用できる空調シ ステムが注目されている。

本検討では、太陽熱によって生成した温水を、デシカ ント外調機に利用し、夏期の高湿空気の除湿に用いるデ シカント外調システムについて、太陽熱集熱パネルを組 み込んだ場合の夏期4カ月の集熱量を予測し、評価する。

3.2 デシカント空調による除湿の仕組み

図-13 に、デシカント外調機の原理を示す。導入外 気は、デシカントロータを通ることで除湿され、高温低 湿の空気なる。この空気を、顕熱交換機を通じて室内の 還気と熱交換させて冷却し、さらに設計温度まで冷却器 で調整し、室内へ供給する。室内からの還気は、顕熱交 換機を通ることで温度上昇し、さらに温水コイル等に よって温度を上げ、高温低湿空気とする。これをデシカ ントロータに通し、顕熱を与えることで、デシカント ロータの除湿機能を再生させる。デシカントロータを再 生させる際に、熱エネルギーが必要となるので、夏期に 温水を有効利用できる空調システムとなっている。

3.3 空調システムモデル

今回検討した、太陽熱利用空調システムを図-14 に

図-14 デシカント外調システム

図-15 計算方法

示す。外気導入量は図-5に示す建物モデルに従い 2100 m²/h とする。デシカント外調機の除湿用温水コイ ルに、冷温水発生器で生成した温水を供給する。処理後 の温水(還水)を太陽熱集熱パネルによって予熱するこ とで、冷温水発生機へ作用する負荷を減らす。太陽熱集 熱パネルは南向き仰角 35°で設置し、パネル面積を 1m²、3m²、10m²、20m²の4パターンでそれぞれ検討す る。

3.4 評価方法

太陽熱集熱パネルの導入効果は、夏期 4 カ月(6~9 月)に空調に利用した温水の総熱量(以下、集熱量)に よって評価する。
3.5 集熱量の算定方法

集熱量の算定には LCEM ツール⁹を用いる。LCEM ツールは、様々な空調機器の機能をオブジェクト化し、 それらを接続させることで、空調システム全体のエネル ギー消費量をシミュレーションする。

LCEM ツールを用いた集熱量の計算方法を図-15 に 示す。夏期の外気温湿度と、室内の設計の温湿度を境界 条件とし、外気温湿度を、室内の設計温湿度にするため に必要な熱量を各空調機器のオブジェクト内で計算する。 空調オブジェクト内の温水コイルの関数と、太陽熱集熱 パネルのオブジェクトを関連付けを与え、温水コイルか ら温水の要求がある時に、太陽熱集熱パネルで温水が生 成される。この時の温水の熱量を予測する。

3.6 太陽熱集熱パネルの集熱量の予測結果

a. デシカント外調機使用時の空気質の変化

32℃、52%の外気が除湿されるまでのシミュレーショ ン結果を、図-16 に示す。外気がデシカントロータに よって除湿され、室内の還気との熱交換・冷水コイルに よる冷却を経て、室内に供給されている状況がシミュ レーションされている。また、顕熱交換を経た還気が、 温水コイルによって加熱され、デシカントロータの再生 に回っている状況も再現できている。

b. 太陽光発電パネルとの導入効果の比較

太陽熱集熱パネルの夏期の集熱量の算定結果を図-17 に示す。パネルの面積が大きくなるほど、集熱量は増え るが、単位面積当たりの集熱効率は、低下する結果と なった。面積が増加するにつれ、生成可能な温水が増加 するが、その分、供給温水が過剰となり全体の効率が低 下しているものと思われる。効率の良いシステムを設計 するには、建物側の温水の需要を考慮し、供給量が過剰 となる場合に蓄熱に回すなどの機能が重要である。

4. まとめ

執務フロアを対象とし、地中熱利用空調システム、太 陽熱利用デシカント外調システムの導入効果に関して ケーススタディをし、以下の結論が得られた。

- i.地中熱利用空調システムについては、各系統の年間エネルギー削減量の総和を最大とする配分方法について提案した。最大熱負荷によって熱交換井の本数を設計する方法と比較し、エネルギー削減効率が31%高い結果となった。
- ii.太陽熱利用デシカント外調システムについて、太陽熱集熱パネルの面積と集熱量の関係を求めた。 パネル面積を増すことで、全体の集熱効率が下がる傾向を把握した。建物の需要熱量とパネルの供給熱量のバランスを考慮し、蓄熱機能を備えたシステム構築が重要であるとの知見を得た。

今後は、地中熱利用空調とその他の空調システムの最 適な組合せの検討、太陽熱の年間のシステム効果につい て検討し、ZEBの実現に向け、設計に資する知見を深 めていきたい。

【参考文献】

- 1) 倉渕 隆、「ニアリー・ネット・ゼロ・エネルギー・ ビル (mZEB) 普及に関する国際動向と目標」、東京 都環境建築フォーラム 講演資料、2014.03.25
- 2) 「ネットゼロエネルギービルに関する研究」、奥村組 技術研究年報、No.38、2012.09
- 3) (財) 省エネルギーセンター、「業務用ビルのエネル ギー原単位管理ツール ESUM ver.5.0」
- (独) 建築研究所一次エネルギー消費量 WEB 算定 プログラム
- 5) ゼネラルヒートポンプ工業(株)、「Ground Club ver 1.0」
- 6)国土交通省、「官庁施設における地中熱利用システム 導入ガイドライン(案)」、2013.10
- 7) 北海道大学、「地中熱ヒートポンプシステム」、オーム社、2007.09.25
- 8) (社) 空気調和衛生工学会、「空気調和衛生工学便覧 第14版 空調設編」
- (社)公共建築協会「ライフサイクルエネルギーマ ネジメント LCEM ツール ver 2.0」

アクティブ・ノイズ・コントロールの 制御方法に関する研究

ーアクティブ消音システムの実工事への適用ー

A Study on Active Noise Control Method

- Application of Active Noise Attenuation System to Actual Construction Work -

柳沼勝夫* 安井健治* 金澤朗蘭*

要旨

建設現場や工場では、建設機械や産業機械から発生する騒音によって近隣から苦情が寄せられる ことが多い。建設機械や産業機械には、低周波数領域(100Hz 以下)で他の周波数よりも特出して 音圧レベルが高い騒音を発生するものがある。防音パネル等の材料を用いて囲いや塀を設ける従来 の騒音対策は、低周波数領域の騒音に対して低減効果が少ない。また、建物におけるサッシ等の建 具も低周波数領域の遮音性能が悪いため、屋外の低周波数領域の卓越音は建物内へ伝搬しやすい。 低周波数領域の卓越音が不快な音として居住者の心身に悪い影響を与える可能性があることから、 その対策として「アクティブ消音システム」の開発を行った。本研究では、卓越周波数や音圧が 時々刻々と変動する低周波数領域の騒音(シールドトンネル・立坑掘削工事に使用される 50t ラフ タークレーンの騒音)に対して「アクティブ消音システム」を適用し、低周波数領域の卓越音の低 減効果を確認できた。

キーワード:アクティブ・ノイズ・コントロール、低周波音、建設機械、ラフタークレーン

1. まえがき

建設現場や工場等から発生する騒音により、近隣住民 から苦情を寄せられることが多い。環境省、水・大気環 境局大気生活環境室の「平成 24 年度騒音規制法施行状 況調査について」によれば、平成 24 年度に全国の地方 公共団体が受理した苦情は 16,518 件であり、その中で 建設作業や工場が約 60%を占めている。また、近年で は、低周波音に係る苦情も増加しており、低周波数領域

(100Hz以下)の対策も重要視されている。

建設現場や工場の騒音源には、建設用または産業用機 械がある。騒音の周波数特性は機械によって様々である が、ラフタークレーンやバックホウ等のエンジンで稼働 する建設機械や室外機でファンをもつ産業機械は、低周 波数領域で他の周波数よりも音圧レベルが卓越する騒音 (以下、卓越音と記す)を発生する。

低周波数領域の音に対する遮音対策は難しく、従来の 防音パネル等を用いた囲いや塀の対策では、周波数が低 いほど材料の遮音性能が悪いことや回折などにより、低 周波数領域の騒音に対しては遮音効果を期待できない。 また、建物のサッシ等の建具も低周波数領域の遮音性能 が悪いため、屋外の低周波数領域の卓越音が建物内へ伝 搬しやすい。このため、建設現場や工場で発生する低周 波数領域の卓越音が近隣建物の居住者に不快な音として 影響を与える可能性がある場合には対応が難しかった。

以上のことから、低周波数領域の騒音対策として、これまで能動騒音制御(以下、ANC: Active Noise Control と記す)に関する研究を行ってきた。ANC とは、図ー 1に示すように制御対象の一次音源の音に対して逆位相 の音を二次音源から出力し、音の干渉によって消音する 技術である。既報¹⁾では、ANC のシステムをバックホ

*技術研究所

ウ(容量 0.8m³)の騒音に対して適用した結果、卓越周 波数の変動が少ない状況で低周波数領域の卓越音を低減 できることを報告した。本報では、低周波数領域の卓越 周波数が大きく変動する騒音も対象にした「アクティブ 消音システム」(以下、本システムと記す)を開発し、 立坑掘削工事に使用する 50t ラフタークレーンの騒音に 対して適用したので、その事例を報告する。

2. アクティブ消音システムの概要

2.1 アクティブ消音システムの構成

本システムは、ANC を適用したシステムである。 本システムの主な機器構成を図-2、写真-1に示す。 本システムは、主に参照マイク、スピーカー、アンプ、 制御コンピュータ (PC) で構成されている。音源近く に参照マイクを設置して制御対象の音を測定後、制御コ ンピュータ内で制御対象音と逆位相になる信号を作成し、 音源近くに配置したスピーカーから制御音を出力させて 制御対象音を低減する。

また、本システムは、インバータと無停電電源装置も 使用する。インバータは、建設現場で電源供給が不可能 な場合に使用する機器である。建設機械のシガーライ ターからインバータで 24VDC を 100VAC へ変換し、本 システムの電源を供給する。無停電電源装置は、現場作 業員による本システムの操作負担を減らす目的で追加し た。無停電電源装置により、本システムへの電源供給が 断たれると制御コンピュータが自動停止し、電源供給が 開始されると自動起動する。このため、建設機械から電 源供給する際に、エンジンを停止する時やエンジンを始 動する時も本システムの操作は不要である。

2.2 アクティブ消音システムによる制御方法

ANC の制御方法には、主にフィードバック制御と フィードフォワード制御が用いられる。本システムは、 既報¹⁾の ANC システムと同様な理由でフィードフォ ワード制御を採用した。本システムのフィードフォワー ド制御を図**-3**に示す。

ANC のフィードフォワード制御では、騒音源近くに 参照マイクを設置し、騒音を代表する参照信号を検出す る。その後、参照信号を制御コンピュータで処理し、制 御点で音源からの到達音に対して逆位相・同振幅になる ようにスピーカーから制御音を出力する。ただし、制御 点では、制御コンピュータ等による時間遅れ(位相差) や振幅の誤差が生じる。このため、一般にダクト等に採 用する場合²⁾には、誤差マイクを制御点に設置し、誤 差マイクから誤差信号を制御コンピュータに送ることで 制御音を修正している。一方、本システムの場合は、屋 外の建設現場で使用することを想定している。建設現場 では、フィールドが広く制御点が複数あることや様々な 騒音が発生すること、また、機器の設置に制約を受けや

図-2 アクティブ消音システムの概要

写真-1 アクティブ消音システムの機器構成

すいため、ANC の誤差を的確に捉えられる最適な位置 に誤差マイクを設置することが難しい。このため、事前 に本システムの誤差を確認し、現場適用時にその誤差情 報をもとに修正を行う方法が効果的と考え、誤差マイク を使用しない制御方法とした。

2.3 アクティブ消音システムに適用したフィルタ

本システムの制御コンピュータでは、測定した騒音か ら制御対象の周波数の音を取り出すバンドパスフィルタ と制御する卓越周波数を時間領域で推定する適応フィル タを使用している。これらのフィルタにより、時々刻々 と変わる低周波数領域の卓越周波数や音圧を推定できる ようにした。

バンドパスフィルタの振幅比と位相差の周波数特性の

事例を図-4に示す。図-4は、30Hz~70Hz において 振幅比 1.0 で通過するバンドパスフィルタの特性を示し ている。対象周波数以外の音は、振幅比を小さくし、ス ピーカーからの出力を小さくする。ただし、バンドパス フィルタを通過する際に波の位相差が生じる。図-4の 下段にバンドパスフィルタの位相差を示すが、波の位相 は、例えば 60Hz の入力信号に対して出力信号が 50°遅 れる。このように、バンドパスフィルタでは、入力と出 力の位相差は周波数の変化とともに変化する。したがっ て、バンドパスフィルタを通過した信号は、位相補正を 行わないと位相遅れにより騒音を増幅させてしまうこと が考えられる。このため、効率良く音を低減するには、 バンドパスフィルタの出力信号に位相補正が必要となる。

適応フィルタは、LMS アルゴリズム²⁾を使用し、測 定した騒音の卓越周波数を時間領域で推定を行うフィル タである。このフィルタにより、その周波数に合わせて バンドパスフィルタを通過した制御信号も時間領域での 位相補正が可能となる。

2.4 アクティブ消音システムのスピーカーの設置位置

本システムでは、スピーカーを音源に近接して設置す ることを想定している。このため、図-5に示すような 一次音源(音源)と二次音源(スピーカー)を近接して 設置するダイポールによる放射パワーの低減方法²⁾で 騒音を低減することになる。この低減方法を適用した場 合、遠方での音の強さ *I*_a は、騒音源のみの場合の音の 強さ *I*_mに対して式(1)の関係になる。

$$\frac{I_d}{I_m} = \left|\frac{2\pi D}{\lambda}\right|^2 \cos^2 \theta \qquad \cdot \cdot \cdot (1)$$

ここで、D:一次音源と二次音源の中心間距離(m)
え:波長(m)
θ:図-5に示す角度

よって、全方向で制御対象の音を低減する場合、式(1) より制御対象音の卓越周波数を確認し、 $D < \lambda / (2\pi)$ となるようにスピーカーを設置する。

3. アクティブ消音システムの特性

3.1 制御機器の位相特性とゲイン特性

ANC を使用する場合、制御対象音と制御音の位相差 や音圧差が騒音の低減量に影響する。このため、本シス テムの開発においては、バンドパスフィルタや制御コン ピュータ、また、スピーカー等の位相特性やゲイン特性 を考慮した。

バンドパスフィルタは、設計段階において周波数ごと の位相特性が既知である。しかし、本システムに使用す

図-4 バンドパスフィルタの振幅比と位相差(例)

る機器の位相特性とゲイン特性については、未知である ため、予備試験により確認した。

3.2 予備試験

奥村組技術研究所・音響実験棟³⁾の無響室で予備試 験を行った。測定ブロックダイヤグラムを図-6に示す。

予備試験では、周波数が漸増するスイープ音を音源と し、スイープ音を測定した本システムより制御音を発生 させた。そして、スイープ音と制御音をデータレコーダ に収録し、収録データを処理して周波数別に本システム の位相特性とゲイン特性を確認した。なお、スイープ音 を出力するスピーカーと本システムの参照マイクの距離、 および制御音を出力するスピーカーと制御音を測定する マイクの距離については、実工事での参照マイクの設置 を想定して 10cm とした。

収録したデータより入力(1ch)と出力(2ch)の振幅 比と位相差を求めた。振幅比から本システムのゲイン特 性を図-7に、位相差を図-8に示す。なお、バンドパ スフィルタの振幅比と位相差は、図-4と同様の特性で ある。また、スイープ音を 20Hz から 80Hz まで連続し て出力させた。

本システムのゲイン特性は、30Hz から 70Hz まで周 波数の増加に伴って振幅比が増加している。本システム の位相差は、30Hz から 50Hz 程度まで大きくなってい る。また、50Hz で-180°から 180°となり、50Hz 以 上から位相遅れが小さくなっていくことがわかる。ただ し、この予備試験により求めた本システムの位相特性は、 バンドパスフィルタの位相特性も含んでいる。このため、 測定結果と既知のバンドパスフィルタの位相特性の差よ り本システムの位相特性とゲイン特性を求める。

以上より、予備試験で得た本システムの位相特性およ びゲイン特性を用いて制御信号の補正を行い、スピー カーから逆位相の制御音を出力させる。

4.立坑掘削工事への適用

4.1 立坑掘削工事の概要

写真-2に示すシールドトンネル・立坑掘削工事の 50t ラフタークレーン(以下、ラフターと記す)から発 生する低周波数領域の卓越音に対して、本システムを適 用した事例を報告する。

工事場所は、都市部の幹線道路沿いの狭隘地で飲食店 やマンションに近接している。掘削工事に使用する主な 建設機械はラフターである。工事場所と飲食店、および マンションが近接しているため、近隣住民への配慮とし てラフターの騒音対策を行った。

4.2 50 t ラフタークレーンの騒音特性

使用されるラフターの騒音の発生状況を調査した結果、 ラフターのエンジンを稼働させた場合、排気筒や吸気ガ ラリがあるラフター後方から主に騒音を発生することが わかった。また、排気筒からは、低周波数領域の卓越音 も発生していた。ラフターから後方 lm(高さ GL+ 1.2m)離れた位置でラフターの騒音を測定した結果、 騒音の周波数特性は、図-9に示すようにエンジンの回 転数に応じて低周波数領域の卓越周波数が変化すること がわかった。このため、ラフターの排気筒から発生する 低周波数領域の卓越音に対して、本システムを適用した。

4.3 アクティブ消音システムの設置概要

アクティブ消音システムの設置概要を図-10 に、ス ピーカーとマイクの設置状況を写真-3に示す。本シス

図-9 50t ラフタークレーン騒音の周波数特性

テムの参照マイクは、音源である排気筒の中心から予備 試験と同様に 10cm 離して設置した。スピーカーは、可 能な限り排気筒に近づけて設置した。排気筒中心とス ピーカー中心の距離は、75cm である(式(1)より 70Hz まで全方位で低減可能)。

立坑掘削工事におけるラフターは、立坑の掘削、運搬 車への積込みの作業を繰り返し行う。1 サイクルの作業 時間は、約6分である。また、作業に応じてエンジンの 回転数が異なる。一連の作業において、排気筒から発生 する卓越周波数を測定した例を図-11 に示す。作業状 況によりエンジンの回転数が変わり、それに伴って卓越 音も変化する。本工事の場合は、卓越周波数が 30Hz~ 60Hz 程度の幅で変化した。30Hz 付近はアイドリング時、 60Hz 付近はバケットの高速巻下げ、または巻上げ時、 40Hz 付近の卓越周波数の頻繁な変動は掘削作業時であ る。また、掘削土積込み時は 50Hz 付近である。このた め、ラフターから発生する卓越音の状況から、本システ ムのバンドパスフィルタを 30Hz~60Hz で振幅比 1.0 と なるように設計した。

4.4 アクティブ消音システムの適用効果

本システムの効果を確認するため、ラフター作業時の 音圧を測定した。測定点の位置を図-10 に示す。測定 点は、参照マイクの位置、スピーカーから 10cm 離れた 位置(測定点①)、飲食店側の敷地境界付近の 2 点(測 定点②、測定点③)、防音パネル背後から 1m 離れた位 置(測定点④)とした。なお、制御コンピュータから出 力される制御信号も測定した。測定点②、測定点③、測 定点④は、JIS Z 8731 に準拠し、高さ GL+1.2m とした。

バケット巻下げ時の制御信号(電圧波形)とスピー カーから出力された音圧波形を図-12に示す。また、 排気筒前とスピーカー前の音圧波形を図-13に示す。

制御信号は正弦波で出力しているが、スピーカーから 出力される音圧は波の山の部分で歪を生じており、制御 音がスピーカーの出力限界を超えている可能性がある。 排気筒前とスピーカー前の両波形を比較すると騒音源に 対してほぼ逆位相であり、スピーカーから逆位相の音を 出力できている。音圧の大きさについては、"排気筒 前"に対して"スピーカー前"の最大音圧が半分程度で

図-10 システムの設置および測定点概要 (現場配置図)

写真-3 スピーカーと参照マイクの設置状況

あった。この原因も卓越音の大きさがスピーカーの出力 限界を超えていることが考えられる。このため、本シス テムの性能を向上させるためには、低周波数領域の音を 十分に出力できる機器の選定が必要と考える。

飲食店前の敷地境界付近(測定点②)における本シス テムによる制御前、および制御後の音圧波形を図-14 に示す。なお、作業は、バケットを高速で巻下げしてい る状態である。制御後は、制御前と比較して、低周波成 分の波が減り、高周波成分が残っている波に変化した。 また、音圧の最大値は約 30%低減していることから、 敷地境界付近で本システムの効果を確認できた。同作業 時、同測定点における音圧を 1/3 オクターブバンド分析 した結果を図-15 に示す。63Hz 帯域の卓越音が制御後 に 10dB 以上低減しており、低減卓越周波数の卓越音に 対して本システムによる効果を確認できた。

測定点②において1サイクルの作業時間帯(約6分) で音圧レベルを求めた結果を図-16に示す。卓越周波 数の変動が激しい掘削作業も含む1サイクルの時間帯で 評価を行った場合、制御後の低減効果は、40Hz 帯域で 3dB、50Hz 帯域で7dB、63Hz 帯域で5dB であった。ま た、測定点③、測定点④の測定結果を図-17、図-18 に示す。他の測定位置でも40Hz 帯域から63Hz 帯域で 測定点②と同程度の低減効果を得た。

以上より、周波数や音圧が時々刻々と変動する低周波 数領域の卓越音に対して低減効果を得ることができた。

5. まとめ

立坑掘削工事のラフターから発生する低周波数領域の 卓越音に対して、本システムを適用した。

その結果、ラフターから発生する低周波数領域の卓越 音を低減できること、作業状況に応じて卓越音が時々 刻々と変化する場合にも対応できることを確認した。な お、制御対象音の音圧に対して、本システムの制御音の 出力が十分でないので、低周波数領域で十分な制御音を 出力できるアンプやスピーカーを選定することにより、 さらに低減効果を向上させることが可能と考える。

図-15 測定点②の 1/3 オクターブバンド分析結果 (バケット巻下げ)

今後は、他の建設現場にも適用し、より低減効果を得 られるアクティブ消音システムに改良していきたい。

【参考文献】

- 金澤朗蘭、稲留康一、「アクティブ・ノイズ・コント ロールの制御方法に関する研究」、奥村組年報、 pp.98-103、2012.9
- 2) 西村正治、宇佐川毅、伊勢史郎、「アクティブノイズ コントロール」、コロナ社、pp.6-12、pp.72-73、2006
- 3) 稲留康一、「奥村組技術研究所の音響実験施設」、騒音制御、Vol.28、No.3、pp.180-184、2004.6

